

A New Era of Tunnel Blasting: Electronic Detonators and Geohazard Reduction

Geohazards in Transportation August 3, 2005

> Doug Anderson Senior Supervising Geologist Senior Professional Associate Parsons Brinckerhoff

Overview

Issues in Tunneling

- Vibration
- Wall Damage/Overbreak
- > Example Tunneling Projects (Urban)
- > Traditional Blasting Approach
 - Overall Procedures
 - Vibration Generation
- > Electronic Detonator Fundamentals
- > Application to Tunneling
- > Implications

Before We Begin...

Presentation is Informational NOT a Sales Pitch PB does not manufacture or sell electronic detonators Strictly to promote advances in the state-

of-the-art

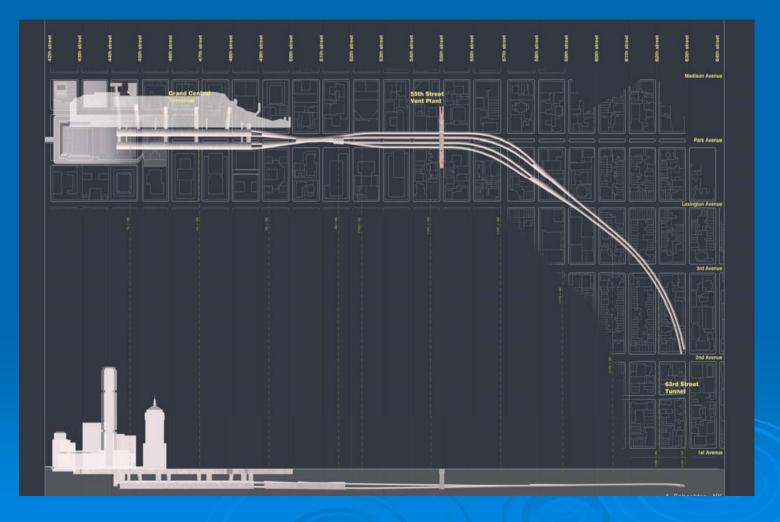
Geohazard Issues in Tunneling

For the Client

- Stability of the Project
- Safety and Security

For the Stakeholders

- Protection of Neighboring Assets
 - Stability of Underground Structure
 - Vibration



Example Tunneling Projects

- > Two New York City Projects
 - Hard Rock (Manhattan Schist)
 - Close Proximity
 - High-Value Surface Structures
 - Network of other Tunnels, Underground Structures
- East Side Access
 Number 7 Line Extension

> Tunnel Boring Machine for Long Drive

Blasting for:

 Station Cavern
 Shafts and Adits
 Access Shafts
 Vent Shafts
 Cross Passages

> Client Long Island Railroad > Stakeholders Metro North Railroad **Grand Central Terminal Overlying Rail Lines** New York City Transit • Adjacent Subways Historical and Expensive Surface Structures

Number 7 Line Extension

Number 7 Line Extension

> Tunnel Boring Machine for Long Drive

> Blasting for:

- Station Caverns
- Shafts and Adits
- Cross Passages

Number 7 Line Extension

Client

- New York City Transit
- Stakeholders
 - Port Authority
 - Bus Terminal
 - Lincoln Tunnel
 - Amtrak
 - Hudson River and Empire Line Tunnels
 - Long Island Railroad
 - Adjacent Yards
 - Surface Structures
 - Javits Convention Center
 - Historical Structures

Geohazard Issues Revisited

Client

- Design Issues KNOWN
 - Overbreak and Stability
 - Vibration Predictable and Controllable

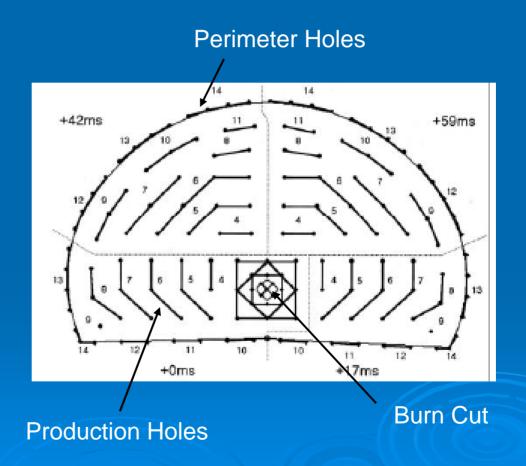
> Stakeholders

- Confidence:
 - Structure will be Stable
 - Vibrations will be Minimal
- > Overall NO Surprises

Electronic Detonators And the Issues

Vibrations Predictable and Controllable
 Overbreak Reduced

Electronic Detonators Mandated
 Why? I'll Tell You



Traditional Blasting Approach

- > Timed Sequence of Specialized Blastholes
 - Burn Cut
 - Production Holes
 - Perimeter Holes
- Long Period Delays

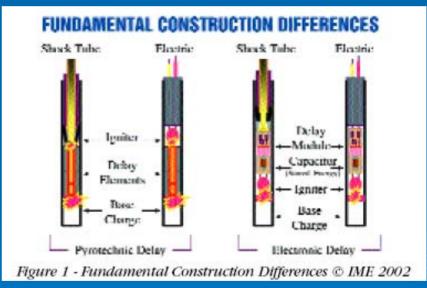
Traditional Blasting Approach

> Long Period Delays > Several Holes on one delay > Scatter assumed "good"

Problems with Traditional Approach

Burn Cut irregularly developed
 Production Holes Inefficient
 Perimeter Holes Irregular – Overbreak

> Vibration Unpredictable


> Overall: Non-reproducible Results

Detonator Comparison

Similar Size for both

> Pyrotechnic:

- Delay Element is
 Train of Explosive
- Delay time related to length and density of explosive
- > Electronic:
 - Delay Element is
 Computer Chip

Electronic Detonator Advantages

> Accuracy of Firing Times (scatter)

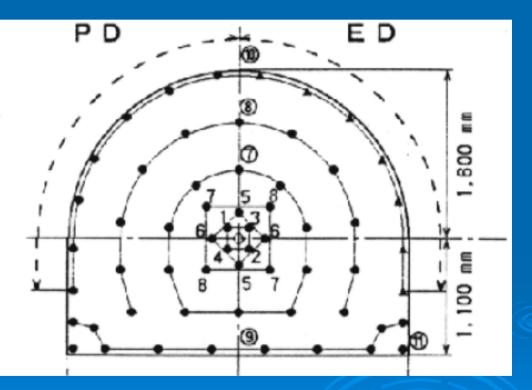
- Electronic: 0.5 ms Irrespective of Period
- Pyrotechnic: 2% of firing time
 - For 1500 ms Long Period Delay = 30 ms
- Safety
 - Circuits Checkable Before and After Blast
- > Security
 - Detonator Fired by Specific Blasting Machine

Example Courtesy Claude Cunningham

• The perimeter control and the over break experienced using shock-tube timing. With E-Det timing the half barrels on the perimeter are clearly visible as well as the minimal over-break experienced.

Electronic perimeter

Shocktube perimeter

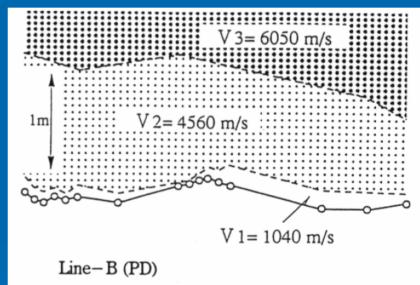

• The damage to wire meshing and roof bolts is extensive with shock-tube. Resulting in the mine having to re-support each blast using this system at great expense. When using E-Det timing little if any damage is experienced.

Joao Campos & AEL team: El Teniente, 2000

Japanese Study (1995)* Comparing Electronic and Pyrotechnic

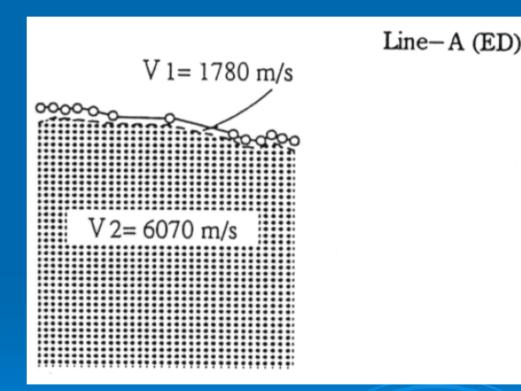
Electronic Used Only on Perimeter Holes

Cracking and Seismic Profiling Measured

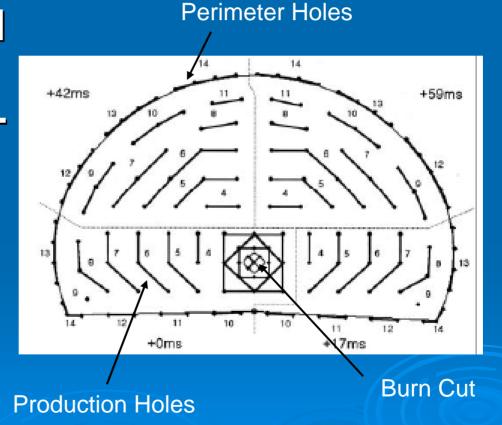


* Yamamoto, Ichijo, and Tanaka, ISEE Proceedings

Japanese Study (continued)


> Pyrotechnic Delays **Produced 1** meter of **Damaged Rock** Reflected in **Both Overbreak** and Subsurface Damage

Japanese Study (continued)


Damage **Restricted to** 0.1 meter Below Surface > Less **Overbreak** and Damage

Application of Electronic Detonators to Tunneling

> 1. Applied to Standard Delay Sequence Long Period > 2. Shorter Delays **Possible!**

Why a "New Era"?

Effects Design by Accurate Knowledge of Blast Effects

Possible Redesign with Shorter Delays

- More Effective Use of Explosive Energy
- Vibration Control Methods by Superposition Possible

Implications for Geohazards

Important in Urban Environments Stability and Vibration Control

Stability ALWAYS an Issue

> Vibration Control Increasingly Important – even in the "Hollers"

