Marshall University Syllabus

Course Title/Number Computer Architecture/CS402
Semester/Year Spring/2014
Days/Time S201 CRN: 4740 MWF/10:00 - 10:50 AM
Location GH206A
Instructor Jonathan Thompson
Office GH205C
Phone (304)696-6349
E-Mail thompsonj@marshall.edu
Office/Hours GH205C/MWF 9:00 – 9:50a and 1:00 - 1:50p

University Policies By enrolling in this course, you agree to the University Policies listed below. Please read the full text of each policy by going to www.marshall.edu/academic-affairs and clicking on “Marshall University Policies.” Or, you can access the policies directly by going to http://www.marshall.edu/academic-affairs/?page_id=802.

Academic Dishonesty / Excused Absence Policy for Undergraduates / Computing Services Acceptable Use / Inclement Weather / Dead Week / Students with Disabilities / Academic Forgiveness / Academic Probation and Suspension / Academic Rights and Responsibilities of Students / Affirmative Action / Sexual Harassment

Course Description: From Catalog
Design and analyze structure of major hardware components of computers including: ALU, instruction sets, memory hierarchy, parallelism through multicore and many core, storage systems and interfaces. PR: CS300.
Course Student Learning Outcomes

The table below shows the following relationships: How each student learning outcomes will be practiced and assessed in the course.

<table>
<thead>
<tr>
<th>Course Student Learning Outcomes</th>
<th>How students will practice each outcome in this Course</th>
<th>How student achievement of each outcome will be assessed in this Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>A knowledge of, and an ability to describe the mechanics of how hardware and system software execute the programs that you write</td>
<td>In class lab exercises</td>
<td>Completion of lab exercises</td>
</tr>
<tr>
<td></td>
<td>Ungraded homework assignments</td>
<td>Graded quiz questions</td>
</tr>
<tr>
<td></td>
<td>In class examples</td>
<td>Graded exam problems</td>
</tr>
<tr>
<td>A knowledge of, and an ability to describe the interaction among the various components of the cpu and of a computer system</td>
<td>In class lab exercises</td>
<td>Completion of lab exercises</td>
</tr>
<tr>
<td></td>
<td>Ungraded homework assignments</td>
<td>Graded quiz questions</td>
</tr>
<tr>
<td></td>
<td>In class examples</td>
<td>Graded exam problems</td>
</tr>
<tr>
<td>An ability to control external I/O devices from the CPU and to create an integrated microcontroller-based system</td>
<td>In class lab exercises</td>
<td>Completion of lab exercises</td>
</tr>
</tbody>
</table>

Required Texts, Additional Reading, and Other Materials

Required Text

Other Materials

- **Arduino Prototyping Platform**
 - www.arduino.cc
- **MARS MIPS Simulator**
 - courses.missouristate.edu/kenvollmar/mars/
- **ChipKIT Uno32 Documentation**
 - www.digilentinc.com

Other Texts

Course Requirements / Due Dates

In-Class Quizzes
The quizzes cover material from the assigned textbook. They are on-line and must be taken during the class period. Each quiz consists of six questions randomly selected from a pool of twenty practice quiz questions. Practice quizzes will be made available a week before the quiz and you may take them as many times as you wish.

Lab Exercises
These give you the opportunity to apply the material covered in the textbook and the lectures. They will be graded as P (done) or F (not done).

Homework
Assignments will be graded using the following point system: 3 points - good, 2 points - fair, 1 point - poor, and 0 points - not submitted. Late submissions will not be accepted.

Interim Examinations
There will be two interim exams during the semester. Only University Excused Absences will be accepted for make-up examinations.

Final Exam
There will be a comprehensive two-hour final exam.

Due Dates
See the Course Schedule on page four for due dates.

Grading Policy

<table>
<thead>
<tr>
<th>Activity</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Attendance, Participation, and Decorum</td>
<td>10</td>
</tr>
<tr>
<td>Quizzes</td>
<td>20</td>
</tr>
<tr>
<td>Lab Exercises</td>
<td>15</td>
</tr>
<tr>
<td>Homework</td>
<td>5</td>
</tr>
<tr>
<td>Exam 1</td>
<td>15</td>
</tr>
<tr>
<td>Exam 2</td>
<td>15</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Course grade is awarded based on the following scheme:

<table>
<thead>
<tr>
<th>Score</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>>= 90</td>
<td>A</td>
</tr>
<tr>
<td>>= 80 & < 90</td>
<td>B</td>
</tr>
<tr>
<td>>= 70 & < 80</td>
<td>C</td>
</tr>
<tr>
<td>>= 60 & < 70</td>
<td>D</td>
</tr>
<tr>
<td>< 60</td>
<td>F</td>
</tr>
</tbody>
</table>

Attendance Policy
Attendance will be taken at the start of class. Only University Excused Absences will be accepted.
Course Schedule

Any revisions to this schedule will be posted on MUOnline.

<table>
<thead>
<tr>
<th>Wk</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
</table>
| 1 | 13-Jan: Course Introduction
Read: Ch 1.1 - 1.3 | 15-Jan: Computer Architecture
Read: Ch 2.1 - 2.5 | 17-Jan: Performance Assessment
Read: Ch 2.6 |
| 2 | 20-Jan: No Class
Martin Luther King Birthday | 22-Jan: Computer Function
Read: Ch 3.1 - 3.2
Quiz: Ch 1 | 24-Jan: System Interconnections
Read: Ch 3.3 - 3.5
HW1 Due |
| 3 | 29-Jan: PCIe Bus
Read: Ch 3.6
Lab1: ChipKIT Setup
Quiz: Ch 2 | 29-Jan: Lab2: Controlling LEDs
Read: Ch 3.6
Lab1: ChipKIT Setup | 31-Jan: Computer Memory
Read: Ch 4.1 - 4.2
HW2 Due
Quiz: Ch 3 |
| 4 | 03-Feb: Cache Memory Design
Read: Ch 4.3
Quiz: Ch 4 | 05-Feb: Lab3: LCD Controller
Quiz: Ch 4 | 07-Feb: Internal Memory
Read: Ch 5.1 - 5.3
HW3 Due |
| 5 | 14-Feb: HW3 Review
Quiz: Ch 5 | 12-Feb: Exam 1
Ch 1 - 5 | 14-Feb: External Memory
Read: Ch 6.1 - 6.5 |
| 6 | 17-Feb: External Devices
Read: Ch 7.1 - 7.5
Quiz: Ch 6 | 19-Feb: DMA, I/O Channels
Read: Ch 7.5 - 7.6
Exam 1 Results | 21-Feb: Number Systems
Read: Ch 9.1 - 9.5, 10.1 - 10.2
HW4 Due |
| 7 | 24-Feb: Integer Arithmetic
Read: Ch 10.3
Quiz: Ch 7 | 26-Feb: FP Representation
Read: Ch 10.5 | 28-Feb: Lab4: HW Interrupts
HW5 Due |
| 8 | 03-Mar: FP Arithmetic
Read: Ch 10.6 | 05-Mar:
Quiz: Ch 9 | 07-Mar: Boolean Algebra, Gates
Read: Ch 11.1 - 11.2
HW6 Due |
| 9 | 10-Mar: Combinatorial Circuits
Read: Ch 11.3
Quiz: Ch 10 | 12-Mar: Lab5: Bits and Bytes | 14-Mar: Sequential Circuits
Read: Ch 11.4 - 11.5
HW7 Due |
| 10 | 24-Mar:
Quiz: Ch 11 | 26-Mar: Exam 2
Ch 6 - 7, 9-11 | 28-Mar: Machine Instructions, Operands, Op Types
Read: Ch 12.1, 12.2, 12.4, 12App
HW8 Due |
| 11 | 31-Mar: Addressing Modes
Read: Ch 13.1, 13.3, 13.5 | 02-Apr: MIPS ISA
Exam 2 Results | 05-Apr: MIPS ISA
HW9 Due |
| 12 | 07-Apr: Processor Organization
Read: Ch 14.1 - 14.3
Quiz: Ch 12 | 09-Apr: Lab6: MIPS Simulator
Quiz: Ch 13 | 11-Apr: Pipelining
Read: Ch 14.4
HW10 Due |
| 13 | 14-Apr: Instruction Parallelism
Read: Ch 16.1 - 16.2 | 16-Apr: Lab7: ChipKIT Assembler
Quiz: Ch 14 | 19-Apr: Multiprocessors
Read: Ch 17.1 - 17.2
HW11 Due |
| 14 | 21-Apr: Cache Coherence
Read: Ch 17.3 - 17.4 | 23-Apr: Lab8: R/W Memory, EEPROM
Quiz: Ch 16 | 25-Apr: Clusters
Read: Ch 17.5 - 17.6
HW12 Due |
| 15 | 28-Apr: Vector Computation
Read: Ch 17.7 | 30-Apr: Multicore
Read: Ch 18
Quiz: Ch 17 | 02-May: Last Class
Quiz: Ch 18 |
| 16 | 05-May: Final Exam
10:15 - 12:15 GH206A | | |