Marshall University Syllabus

Course Title/Number Internship/ CS 475
Semester/Year Spring/2014
Days/Time Not Applicable
Location Not Applicable
Instructor Venkat N Gudivada
Office GH 207A
Phone 304 - 696 - 5452
Email gudivada@marshall.edu
Office/Hours Tuesday and Thursday: 1:00 - 2:00 PM; Friday: 10:00 - 12:00 Noon and 1:00 - 3:00 PM

University Policies
By enrolling in this course, you agree to the University Policies listed below. Please read the full text of each policy by going to www.marshall.edu/academic-affairs and clicking on “Marshall University Policies.” Or, you can access the policies directly by going to http://www.marshall.edu/academic-affairs/?page_id=802 Academic Dishonesty/ Excused Absence Policy for Undergraduates/ Computing Services Acceptable Use/ Inclement Weather/ Dead Week/ Students with Disabilities/ Academic Forgiveness/ Academic Probation and Suspension/ Academic Rights and Responsibilities of Students/ Affirmative Action/ Sexual Harassment.

1 Course Description: From Catalog

An in-depth and hands-on involvement in a real-world project under direct professional supervision. The project may be on-campus or off-campus. Requires prior approval of the internship director, who is a member of the computer science faculty.

To register for this course, student must contact the instructor and provide in writing the following information related to internship work: sponsor, assigned division, name of supervisor, position and responsibilities, and the number of hours of academic credit requested. The instructor will determine the number of hours of academic credit the student is eligible for based on the scope of work planned.
2 Course Student Learning Outcomes

The table below shows the following relationships: How each student learning outcome will be practiced and assessed in the course.

<table>
<thead>
<tr>
<th>Experience the importance and relevance of ideas learned in classroom work in a real-world setting (contributes to BSCS degree program goal a (see Section 8))</th>
<th>Work done at the organization sponsoring the internship</th>
<th>Assessment of student's work by the supervisor at the sponsoring organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broaden the practical experience of the student by exposure to new computer systems, applications, or unique and challenging work environments (contributes to BSCS degree program goals a and i (see Section 8))</td>
<td>Computing work environment at the sponsoring organization</td>
<td>Assessment of student's work by the supervisor at the sponsoring organization</td>
</tr>
<tr>
<td>Provide the student with an opportunity to learn first-hand the professional expertise and discipline that is expected of the student in workplace after graduation (contributes to BSCS degree program goal i (see Section 8))</td>
<td>Hands-on, practical work done at the sponsoring organization</td>
<td>Assessment of student's work by the supervisor at the sponsoring organization</td>
</tr>
<tr>
<td>Provide the student the experience of working within a group or team (contributes to BSCS degree program goal d (see Section 8))</td>
<td>Hands-on, practical work done at the sponsoring organization</td>
<td>Assessment of student's work by the supervisor at the sponsoring organization</td>
</tr>
<tr>
<td>Help the student establish initial contacts with industry and assess what technical and professional skills are needed to get employed after graduation (contributes to BSCS degree program goal d (see Section 8))</td>
<td>Interaction of the student with employees of the sponsoring organization</td>
<td>Assessment of student's work by the supervisor at the sponsoring organization</td>
</tr>
</tbody>
</table>

3 Required Texts, Additional Reading, and Other Materials

The internship work does not require any specific course materials. Students should check with their sponsoring company to determine if any materials are needed.
4 Grading Policy

Students will be awarded CR (credit) or NC (no credit) grade based on their performance on the internship work. The grade of CR or NC does not affect student GPA. A CR grade will be assigned based on the following requirements:

- Students need to provide a **monthly summary** of their internship work in the form of a PDF document via email.
- Student should maintain a **daily log** of internship activities. This log should list major tasks the student has worked on. The student should present this log to the instructor upon completion of the internship work.
- At the conclusion of the internship work, student is required to submit a **short report** comprising the following information: interpersonal and communication skills gained, majors tasks completed, new knowledge and skills acquired, and a reflection on the internship work.
- A **brief letter** from the supervisor at the sponsoring organization evaluating the student’s internship work.

5 Attendance Policy

Students should work with the sponsoring organization and come up with a work schedule.

6 Course Schedule

Not applicable

7 Classroom Etiquette

Not applicable

8 BSCS Degree Program Goals

a. an ability to apply knowledge of computing and mathematics appropriate to the discipline, including the ability to analyze and evaluate performance tradeoffs of algorithms, data structures, and hardware solutions;

b. an ability to analyze a problem, and identify and define the computing requirements appropriate to its solution;

c. an ability to design, implement, and evaluate a computer-based system, process, component, or program, including software systems of varying complexity, to meet desired needs;
d. an ability to function effectively on teams to accomplish a common goal;

e. an understanding of professional, ethical, legal, security, and social issues and responsibilities;

f. an ability to communicate effectively, both written and oral, with a range of audiences;

g. an ability to analyze the local and global impact of computing on individuals, organizations, and society;

h. a recognition of the need for and an ability to engage in continuing professional development;

i. an ability to use current techniques, skills, and tools necessary for computing practice, including the ability of expressing algorithms in at least two of the most important computer languages currently in use in academia and industry.