

CAEP STANDARD ALIGNMENT: R5/RA5 Quality Assurance System & Continuous Improvement **CAEP COMPONENT ALIGNMENT**: R5.2: Data Quality &RA5.2: Data Quality

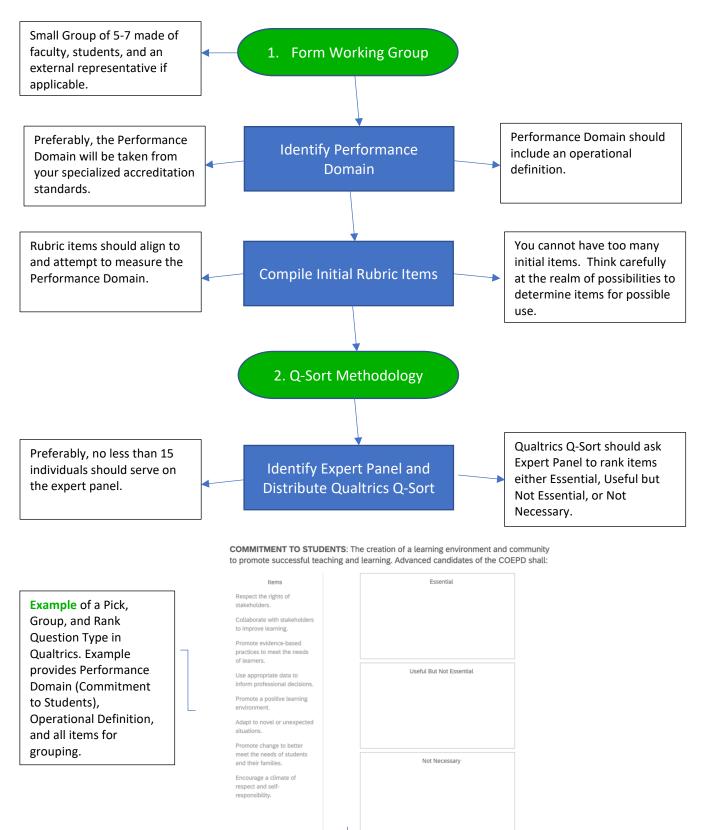
Before beginning the process of validity or reliability, carefully read the following two documents available on the <u>Content Validity/Reliability Procedures webpage</u>. [https://www.marshall.edu/coepd-assessment/content-validity/content-validity-procedure/]

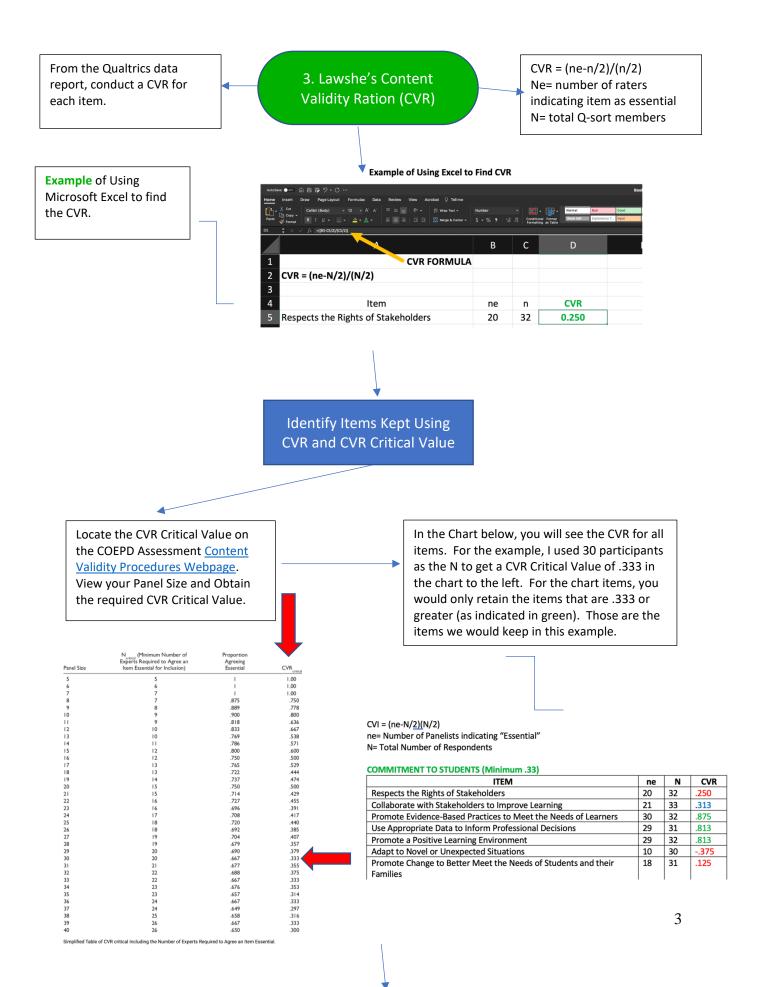
- CAEP Criteria for Evaluation of EPP-Created Assessments & Surveys
- CAEP Criteria for Evaluation of EPP-Created Surveys

Introduction:

The College of Education and Professional Development (COEPD) at Marshall University has established a procedure for content validity and reliability for all Education Preparation Provider (EPP) Created Assessments and Surveys, including key assessments, performance tasks, clinical evaluations, and national board-certified exams. The EPP adopted the procedure to evaluate its assessments in Spring 2022. The content validity and reliability procedures are used by both initial- and advanced-level programs. Procedures follow guidelines outlined in the CAEP Evaluation Frameworks for EPP-Created Assessments and Surveys to design, pilot, and judge the adequacy of the assessments created by the EPP.

The purpose of the content validity and reliability procedures is to provide guidance on collecting evidence and to document the adequate technical quality of assessment instruments and rubrics used to evaluate candidates in the COEPD.


What is Validity?


Cronbach (1971) described validation as the process by which a test developer or test user collects evidence to support the types of inferences that are to be drawn from test scores. Crocker and Algina (2008) stated that the purpose of a content validation study is to "assess whether the items adequately represent a performance domain or construct of specific interest" (pg. 218). At minimum, content validation entails the following steps:

- 1. Defining the performance domain of interest;
- 2. Selecting a panel of qualified experts in the content domain;
- 3. Providing a structured framework for the process of matching items to the performance domain;
- 4. Collecting and summarizing the data from the matching process.

VALIDITY PROCEDURES

Example: EPP-Created Rubric

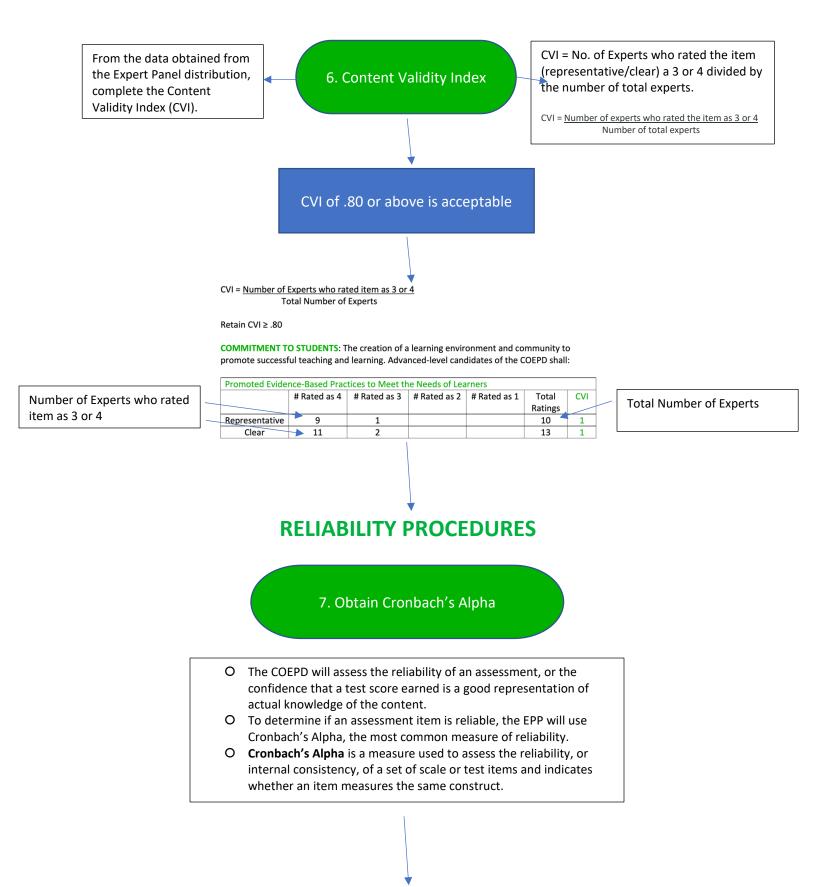
If you are reviewing an existing rubric, please begin with Step 1 above to review and modify rubric items.

Using the same group of individuals as before, prepare an evaluation rubric while considering the following: 1) Basis for judging candidate performance is well defined, 2) performance levels are qualitatively defined by specific criteria aligned with indicators, 3) performance levels represent a developmental sequence, 4) feedback provided to candidates is actionable, and 5) performance levels are defined in actionable, performance-based, or observable behavior terms.

Q3

Distribute the Assignment, Assignment Instructions, and the **Evaluation Rubric to the Expert** Panel used with the Q-Sort. Looking for Construct Validity, the panel members will rate the representativeness and clarity of each item and item descriptor as it relates to the overall construct. Provide each expert with either a paper copy response form or a form created in Qualtrics. The example below is using Qualtrics to collect responses. A template for paper copies can be found the COEPD Resources Microsoft Team under Assessment.

DISPOSITION	MEETS EXPECTATIONS	DEVELOPING
Promote Evidence-Based Practices	Candidate evaluates, or considers	Candidate fails to consider re:
to Meet the Needs of Learners	the results of a current evaluation of, the needs of the learner and utilizes evidence-based practices that are aligned with those needs.	of a current evaluation of the learner's needs OR the candic fails to utilize evidence-base practices aligned to the need the learner.

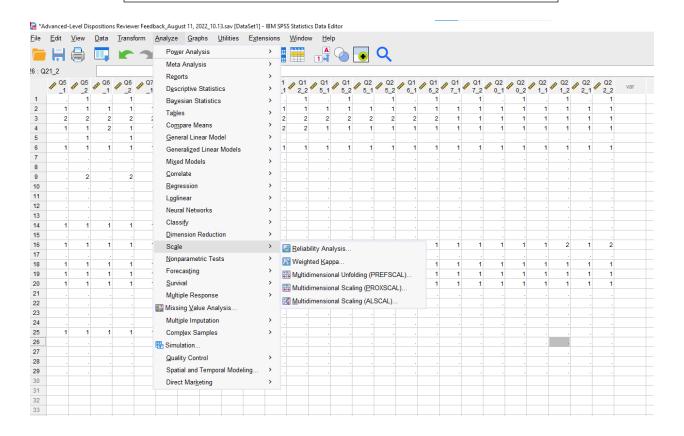

Please select how Representative and Clear the item is in measuring the Construct.

Construct: Commitment to Students

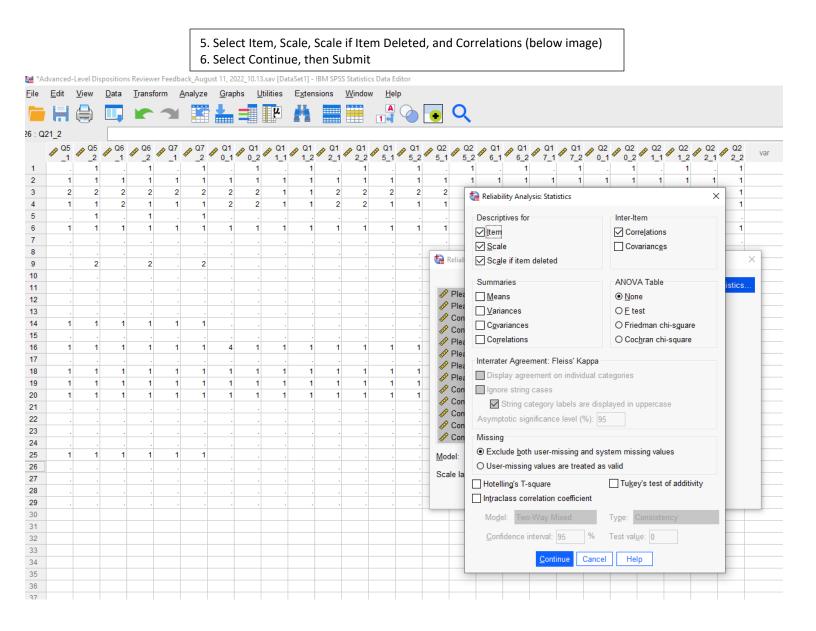
Definition: The creation of a learning environment and community to promote successful teaching and learning. Advanced-level candidates of the COEPD shall: **Item**: Promote Evidence-Based Practices to Meet the Needs of Learners:Right

Representativeness Promote Evidence-Based Practices to Meet the Needs of	Item is Representative of the Construct	Item Needs Minor Revisions to be Representative of the Construct	Item Needs Major Revisions to be Representative of the Construct	Item is Not Representative of the Construct
Learners:Right	0	0	0	0
Clarity Promote Evidence-Based Practices to Meet the Needs of	Item is Clear	Item Needs Minor Revisions to be Clear	Item Needs Major Revisions to be Clear	Item is Not Clear
Learners:Right	0	0	0	0

Please note that the rubric performance levels and performance descriptors are above each item question for easy viewing by the panel members.

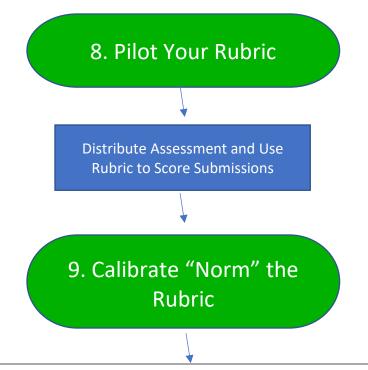

Use SPSS Software to determine Cronbach's Alpha

- Download your data from Qualtrics by going selecting the Data & Analysis Tab > Export & Input > Export Data > SPSS > Download
 Open the data set in SDSS
- 2. Open the data set in SPSS


You may delete all columns except the questions responses (below image)

} *Ac	dvanced-	-Level Dis	sposition	is Review	er Feed	back_Augu	ust 11, 20	22_10.1	3.sav [Dat	taSet1] -	IBM SPS	S Statistics	Data Ec	litor												
ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Trans	form	<u>A</u> nalyze	<u>G</u> rapł	ns <u>l</u>	<u>U</u> tilities	E <u>x</u> ten	sions	<u>W</u> indow	<u>H</u> el													
	H								μ				▲ 1◀		•	Q										
2 :		¢ Q5 2	Q6 1 1			¢ Q7	Q1 0 1 €	Q1 0 2	Q1				Q1 5 1 [°]					Q1 6 2 €	Q1 7 1	₽ Q1 7 2				Q2 1 2 <	Q2 2 1	
1		1		1		. 1		1		1		1		1		1		1		1		1		1		1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	2	2	2	2	2	2 2	2	2	! 1	1	2		2	2	2	2	2	2	1	1	1	1	1	1	1	1
4	1	1	2	1	1	1	2	2	! 1	1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5		1		1		. 1																				
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7		-																								
8																										
9		2		2		. 2																				
10																										
11																										
12																										
13		-																								
14	1	1	1	1	1	1																				
15		•	•										•							•		•			•	
16	1	1	1	1	1	1	4	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	2
17 18	. 1	•	•					. 1		•		. 1		. 1	•	. 1		•		•		•	. 1		•	
10	1	1	1	1	1		1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
20	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
20 21	1	1	1				- 1		•		•	1	- 1			1	- 1	- 1	- 1	- 1		- 1	1	1	- 1	- 1
22												•							•							
23												•											•			
24																										
25	1	1	1	1	1	1																				

3. Select Analyze > Scale > Reliability Analysis (below image)


					4. N ima		que	estio	n ite	ems	to tl	ne It	ems	box	and	d the	n se	lect	Sta	tist	ics (bel	ow					
*Adv	anced-	Level Dis	position	s Reviewe	r Feedba	ack_Aug	ust 11, 20	22_10.13	.sav [Dat	aSet1] -	IBM SPS	S Statisti	cs Data I	ditor				_										
ile <u>I</u>	dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransfo	orm <u>A</u>	<u>A</u> nalyze	<u>G</u> rap	hs <u>U</u> t	tilities	E <u>x</u> ten	sions	<u>W</u> indo	w <u>H</u> e	lp														
							+		μ	H			A	\bigcirc	•	Q												
		-														•												
: Q21	-				_	_		_	_		_			_			_	_	_	_		_	_		_	_	_	
4	Q5 1		A Q6					🖉 Q1		A Q1	A Q1	A Q1							1 Q	1 🔗 0	1 0 0	22	Q2	⁹ 02 ∮	Q2	Q2	Q2 2_2	var
	- '.	-2		1	- '.	-2	<u>_</u>	1		1	2_1	2_2	5_1	J_2 1	5_1	J_2	0_1	1			1		1		1	<u>-</u>	1	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1		1	1	1	1	1	1	1	1	
	2	2	2	2	2	2	2	2	1	1	2	2	2	2	2	2	2	2		1	1	1	1	1	1	1	1	
	1	1	2	1	1	1	2	2	1	1	2	2	1	1	1	1	1	1		1	1	1	1	1	1	1	1	
		1		1		1																						
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	
																												_
		2		2		2										Reliability	Analysis										>	<
)																					Items					1		
1																DI					-				•	<u>S</u> tati	stics	
2																Please :								how Re				
3																Please : Constru								how Re				
L I	1	1	1	1	1	1									· · · ·	Constru				•				ommitme				
5																Please :								mmitme				
5	1	1	1	1	1	1	4	1	1	1	1	1	1	1		Please								how the				
7																Please					R <u>a</u> tin		select	now the	· ¥			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Please					rt <u>a</u> un	ys.						
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Constru												
)	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Constru												
															· · · ·	Constru				•								
2																Constru												
3																Constru												
4							1.1									Constitu	ot. 0011	minen	•••• •									
5	1	1	1	1	1	1									Mo	del:	Alph	a	~									
6															- S	le label:			_									
7															308	ne label:												
3															_			Oł	ĸГ	Paste	Rese	et Ca	ancel	Help				
9																				_	_				-	_		
D																												
1																												

7. View Cronbach's Alpha. A score near 1.00 shows high reliability. A score closer to 0 shows low reliability. As a rule of thumb, if the reliability of items is .80 or above, the assessment has very good reliability. If the reliability of items is .50 or below, the assessment would not be considered reliable. View image on next page to view Cronbach's Alpha under Reliability Statistics.

ile <u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> rans	form	<u>I</u> nsert	F <u>o</u> rm	nat <u>A</u> na	alyze	<u>G</u> ra	phs	<u>U</u> tilities	E <u>x</u> tensi	ons <u>V</u>	<u>V</u> indow
— H												2		
	Reliability	s	ocess y Stat istics n Cori al Stat	Ple Re ea Me Co to nts f a an ote an vel EF II: I mo ice s o rs en Ba	Cronbach's Alpha	ct how tive and sition is he Con: commitr nity to p ful teac g. Advar es of th on: Pro ice-Bas the New entativ ote Evic ices to	I Clear in struct. ment reation o ment room ced-le e CO sed Pract ed	's ed .958 m Sta	N of It atistic an 1.13	18 s	Deviation .354	N 8		
				Rea Me Co to nts f a an ote an vel EP II: I mo ice s c ari Ba	ease sele epresentat ch Dispos easuring th onstruct: C Stude sDefinition learning e d commu e success id learning l candidate 2D sha Dispositio ote Eviden es to Meet of Learner tyPromote sed Pract	tive and sition is commition a: The c environion nity to p ful teac g. Advar es of th on: Pro oce-Bas the Nei s - Cl e Evider tices to	in struct. ment ment brom hing hced-le e CO sed Pract ed		1.13		.354	8		

🚔 *Output2 [Document2] - IBM SPSS Statistics Viewer

- O Calibrating the rubric simply means that the rubric items and scales are clear enough to lead to a consensus among faculty who are grading students work.
 - O This is important when various faculty members are evaluating assessments among multiple course sections.
- O Calibrating helps to ensure that the rubric uses is consistent, and for the most part, free from bias.
- O Helps to ensure that assessment data reflects the expectations of the program, not an individual faculty member or instructor.

- 1. A facilitator prepares materials for scorers to begin calibrating the assessment rubric. Materials include the assessment instructions, the grading rubric, and a student artifact.
- 2. Using the rubric, scorers read the assignment instructions, view the student artifact, and score the artifact using the assessment rubric. Scorers should note words and phrases in the performance descriptors that best describe the quality of work.
- 3. One at a time, scorers share scores for each rubric category while a recorder completes a group score sheet. Do not provide an explanation for the score at this point. Once all scores are shared and recorded by the facilitator, the scorers will discuss differences in the scores, where the differences occurred, and why scorers may have evaluated the artifact differently.
- 4. Scorers justify their evaluation by pointing to specific language in the rubric and evidence in the student artifact. Discuss each piece of student work and resolve issues that may be present because of rubric language, or the evidence provided in the student artifact. Scorer consensus should be reached.

Examples

	Distinguished (4)	Proficient (3)	Basic (2)	Unsatisfactory (1)	
Awareness of the impact of motivation and schema on the learning process	Lesson begins with a clear description of method to activate prior knowledge and build schema toward the learning objective(s); Includes questions that generate intellectual curiosity and engage students with the lesson content through higher order critical thinking and problem solving	Lesson begins with a clear description of method to activate prior knowledge and build schema toward the learning objective(s); Includes questions that generate intellectual curiosity and engage students with the lesson content	Lesson begins with a clear description of method to activate prior knowledge and build schema toward the learning objective(s); Includes questions, but questions lack student engagement and/or stimulation of intellectual curiosity	Lesson begins with a method to introduce the lesson content, but introduction does not activate prior knowledge and/or build schema toward the learning objective(s); Questions are not included or do not engage students in intellectual curiosity	

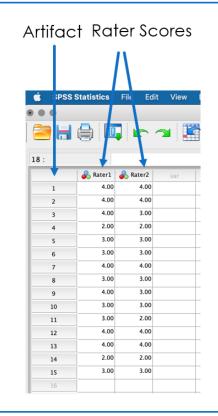
SCENARIO: 5 Faculty members are convened to norm a rubric. A component of the rubric is "Awareness of the Impact of Motivation and Schema on the Learning Process."

The faculty members are given the exact student artifact and asked to score the artifact using this rubric.

The Facilitator has asked that each evaluator provide their score for the artifact and Has recorded the following scores...

· · · · · · · · · · · · · · · · · · ·					
А	В	С	D	E	F
	R1	R2	R3	R4	R5
Awareness of the impact of motivation and schema on the learning process	4	4	4	2	4

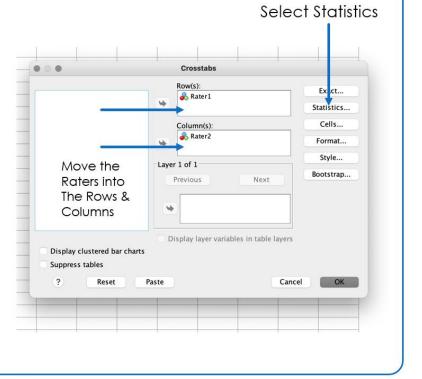
How should the facilitator proceed?

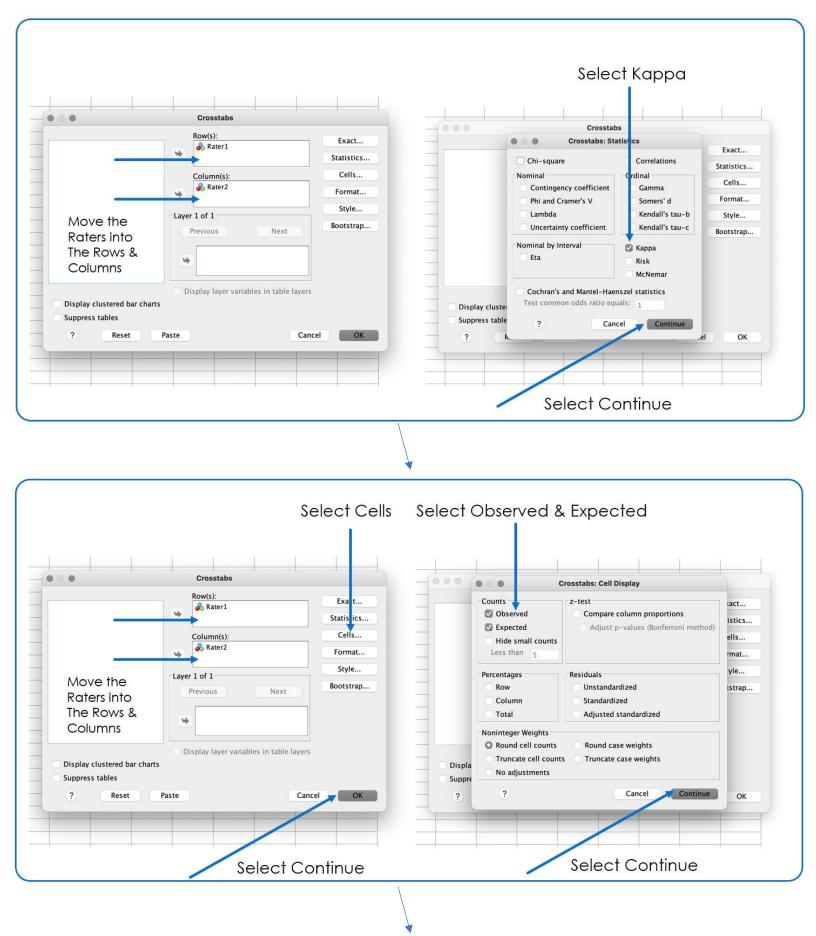

The facilitator should begin by asking Rater 4 (R4) to their reasoning for giving the rating of "2." The rating could be for numerous reasons (unclear verbiage, misinterpretation, etc. The facilitator should ask for reasons behind the rating of "4."

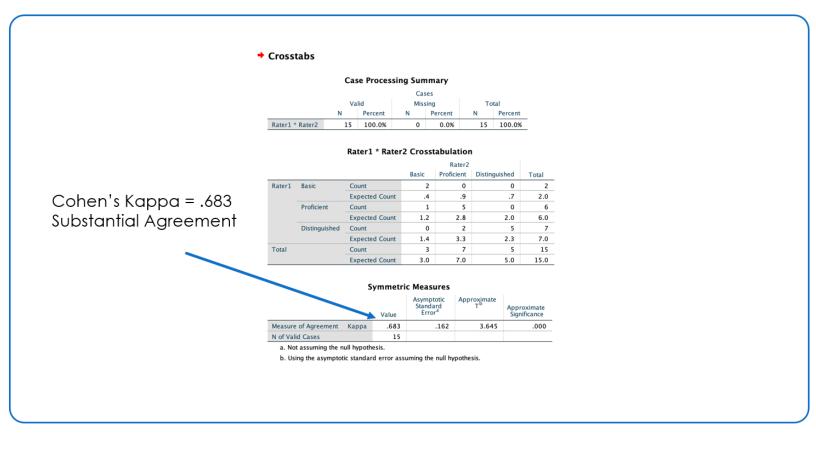
From that point, R4 may be willing to increase their score.

10. Cohen's Kappa

- O Cohen's Kappa assess the extent to which two raters agree.
- O Range from -1 to +1
- O Cohen suggested the Kappa result be interpreted as follows:
 - O values ≤ 0 as indicating no agreement
 - O 0.01-0.20 as none to slight
 - O 0.21-0.40 as fair
 - O 0.41-0.60 as moderate
 - O 0.61–0.80 as substantial
 - O and 0.81–1.00 as almost perfect agreement






- Artifacts should be randomly assigned to raters.
- Artifact 1: Kim and Paula
- Artifact 2: Sandra and Lisa
- Artifact 3: Tom and Feon
- Artifact 4: Feon and Sandra
- Artifact 5: Lisa and Tom
- Artifact 6: Paula and Lanai
- And so on....
- Keep a master list of who the raters are for each artifact, But don't share that list with the raters.

. mac		er Score	5							
	1									
🔹 iPSS	Statistics	Filt Edit View		💰 SPSS	Statistics I	File Edit View	Data Transform	Analyze Graphs Utilities Ex	tensions Window Help	
								Reports	>	
						r 🤉 📱	8 🦊 🚽 💷		> 🛄 Frequencies	
								Bayesian Statistics	> 🚼 Descriptives	
				18 :				Tables	> A Explore	
					🚓 Rater1 🤞	Rater2 var	var var	Compare Means	> Crosstabs	ar
18:	*			1	4.00	4.00	var var	General Linear Model Generalized Linear Models	TURF Analysis Z Ratio	
	💦 Rater1 🧯	Rater2 var		2	4.00	4.00		Mixed Models	> P-P Plots	
1	4.00	4.00		3	4.00	3.00		Correlate	> 2 Q-Q Plots	
2	4.00	4.00		4	2.00	2.00		Regression	>	
3	4.00	3.00		5	3.00	3.00		Loglinear	>	
	2.00	2.00		6	3.00	3.00		Neural Networks	>	
4				7	4.00	4.00		Classify	>	
5	3.00	3.00		8	3.00	3.00		Dimension Reduction	2	
6	3.00	3.00		9	4.00	3.00		Scale Nonparametric Tests	>	
7	4.00	4.00		10	3.00	3.00		Forecasting	\$	_
8	3.00	3.00		11	3.00	2.00		Survival	\$	
9	4.00	3.00		12	4.00	4.00		Multiple Response	>	
				13	2.00	2.00		👭 Missing Value Analysis		-
10	3.00	3.00		14	3.00	3.00		Multiple Imputation	>	
11	3.00	2.00		16		0.055 (Complex Samples	>	
12	4.00	4.00		17	1			Simulation		
13	4.00	4.00		18				Quality Control	>	
14	2.00	2.00		19					>	
	3.00	3.00		20	1			Direct Marketing	>	
15	3.00	5.00		21						

			10000			Reports			11 2222	_
					-	Descriptive Statistics	111	Frequencie		
- 6			2	9 🚠		Bayesian Statistics		Descriptive		
						Tables		Explore		
8 :						Compare Means				
	💰 Rater1	💰 Rater2			VAT	General Linear Model		TURF Anal	vsis	
1	4.00	4.00								
2	4.00	4.00								
3	4.00	3.00								
4	2.00	2.00							_	
5	3.00	3.00								
6	3.00	3.00				Neural Networks				
7	4.00	4.00			-					
8	3.00	3.00			-	Dimension Reduction				
9	4.00	3.00								
10	3.00	3.00								
11	3.00	2.00				Forecasting Survival				
12	4.00	4.00				Survival Multiple Response				
13	4.00	4.00				Willising Value Analysis				
14	2.00	2.00				Multiple Imputation				
15	3.00	3.00				Complex Samples				
						Simulation				
						Quality Control				
18						Z ROC Curve				
						Spatial and Temporal Modeling				
						Direct Marketing				
							1			

You've now established that your EPP-Created Assessments are Valid and Reliable!