Effects of Various Substrate Types on E1618 Pattern Classification of Ignitable Liquids Present in Fire Debris

Jared Vititoe, BS*, Amanda Heeren, MS, and J. Graham Rankin, PhD
Forensic Science Program, Marshall University, Huntington, WV 25701

Abstract
Previously, little research had been performed examining the effects of various substrate types on E1618 analysis of ignitable liquid residues in fire debris. The effects of varying substrates was studied using charred and uncharred carpet, carpet pad, and yellow pine samples spiked with three different ignitable liquid evaporates. It was determined that a substrate may affect E1618 classification of ignitable liquid patterns, as uncharred yellow pine proved virtually impossible for ignitable liquid classification due to the vast abundance of precursory products present in the substrate. Future study in this field could expand this work to include additional substrates, including different wooden substrates to allow for comparison to the yellow pine results, additional ignitable liquids, and varying the ignitable liquid spike volume.

Introduction
The National Fire Protection Association estimates 3,320 civilian fire deaths, an additional 102 firefighter deaths, and 18,705 civilian fire injuries occurred in 2008. Therefore, fire debris analysis is of great importance to the forensic community. One of the largest problems that can arise in the analysis of fire debris is interference from the sample substrate. Due to the extraction procedure for ignitable liquid residues, compounds present in the substrate and products generated during the burning of the substrate (such as pyrolysis and combustion products) may co-extract with ignitable liquid residues to the activated charcoal strip during collection affecting the chromatographic analysis of ignitable liquids. As crime laboratories receive a wide variety of substrates, wood and non-wooden substrates submitted as fire debris, it is important for fire debris analysts to be aware of the differences such substrates may cause. This study sought to understand the effects common fire debris substrates may have upon analysis. It was hypothesized that each substrate will produce various interfering products which analysts must be aware of during analysis to prevent misclassification of ignitable liquids present in the debris.

Materials and Methods

Procedure
- Substrates: carpet, carpet pad, yellow pine; uncharred and charred approximately 50 % (dry weight)
- Ignitable liquids: 10 µL of 50 %, 75 %, and 90 % evaporates of gasoline, kerosene (heavy petroleum distillate), and charcoal lighter fluid (medium petroleum distillate)
- Method blank (empty, un-spiked sample container), uncharred, charred blank, and E1618 standard also analyzed with each run
- Ignitable liquid vapors extracted according to the ASTM E1412 method
- Adsorbates: vapors extracted in a solvent of 0.2 % 3-phenylpropane in carbon disulfide
- E1618 classification of ignitable liquid residues

Gas Chromatography-Mass Spectrometry
- Varian CP-3800 Gas Chromatograph
- 50 m x 0.25 mm x 0.25 µm J&W Scientific HP-1MS
- Helium, 0.7 mL/min
- Injection: 1 µL, 250 °C
- 50:1 split ratio
- Solvent delay: 0-2.00 min
- Analysis: 2.00-38.00 min
- Saturn 2000 Mass Spectrometer: 40-800 m/z, 0.5 s/scan

Results

Discussion
- Carpet: precursory products present in substrate blanks (cineole, such as dodecane, Figure 2.8.5 min); insignificant in spiked samples
- Carpet pad: few detectable precursory compounds in blanks present in minor concentrations; insignificant in spiked samples
- Yellow pine: numerous precursory products present in great abundance in un-charred blanks but insignificant charred samples

Conclusion
- Substrate effect E1618 classification
- Precursory products identified in carpet and carpet pad samples had little to no effect on analysis
- In yellow pine, abundant precursory products inhibited E1618 classification of ignitable liquids in uncharred samples
- Yellow pine precursory products greatly reduced in charred samples (compounds present likely volatilized by charring process)
- Concluded that uncharred yellow pine substrates, or yellow pine substrates that have not been completely charred, may inhibit E1618 classification of ignitable liquid residues
- Amount and type of precursory products in yellow pine likely vary based upon manufacturer and manufacturing processes
- Future studies: additional substrate-ignitable liquid analyses, analyzed substrates with additional ignitable liquids, additional wooden substrates for comparison to yellow pine results

Acknowledgements
- Sue Hetzel, JEA, Limited, and Karen Powers, West Virginia State Police, for reviewing and providing recommendations on this research project.

This project was supported by competitive research grant 2010-DN-BX-K272 awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication/exhibition are those of the authors and do not necessarily reflect the views of the Department of Justice.

References