

Abstract

Synthetic cathinones have become increasingly popular over the past decade. The synthetic cathinones Mephedrone, Methylone, and MDPV have been placed into Schedule I of the Controlled Substances Act based on the Analog Act, which was created to allow substances to be scheduled based on similarities to an already scheduled compound. Several synthetic cathinones have positional isomers, which produce ambiguous mass spectra. Derivatization has been proven useful for producing mass spectra with differences that allow for differentiation of similar compounds. Synthetic cathinone standards were derivatized with three perfluoroacyl derivatizing agents to determine their ability to differentiate positional isomers within a mixture. Compounds containing a primary or secondary nitrogen readily derivatized; while compounds containing a tertiary nitrogen were not able to be derivatized. When placed into mixtures, the positional isomers were distinguishable. Future studies include the determination of a method to derivatize synthetic cathinones containing a tertiary nitrogen.

Introduction

- Synthetic cathinones, commonly found in substances referred to as bath salts, have stimulant and psychoactive properties similar to amphetamine and cocaine.
- Structures are chemically altered to circumvent legislation.
- Mass spectra of the positional isomers are near identical and cannot be individualized. Due to the legal ramifications associated with synthetic cathinones, often with minor
- structural variations, identification of the exact structure is imperative. Perfluoroacyl anhydrides have been used to differentiate between compounds with similar
- mass spectra Trifluoroacetic anhydride (TFAA), heptafluorobutyric anhydride (HFBA), and pentafluoropropionic anhydride (PFPA) are common perfluoroacyl derivatizing agents and were used in this research.
- Perfluoro acyl anhydrides bond with nitrogen atoms contained within synthetic cathinones.
- The effects of the derivatizing agents on each compound and several mixtures of multiple cathinones were compared to determine which agent performed the best for each compound
- The best overall derivatizing agent was determined by examining the GC retention times, the amount of breakdown products present, and mass spectra.

Materials

Cathinones: 2-Methylmethcathinone, 3-Methylmethcathinone, Mephedrone,

- 2-Methoxymethcathinone, 3-Methoxymethcathinone, Methedrone,
- 2,3-Methylenedioxymethcathinone, Methylone, 2-Fluoromethcathinone,

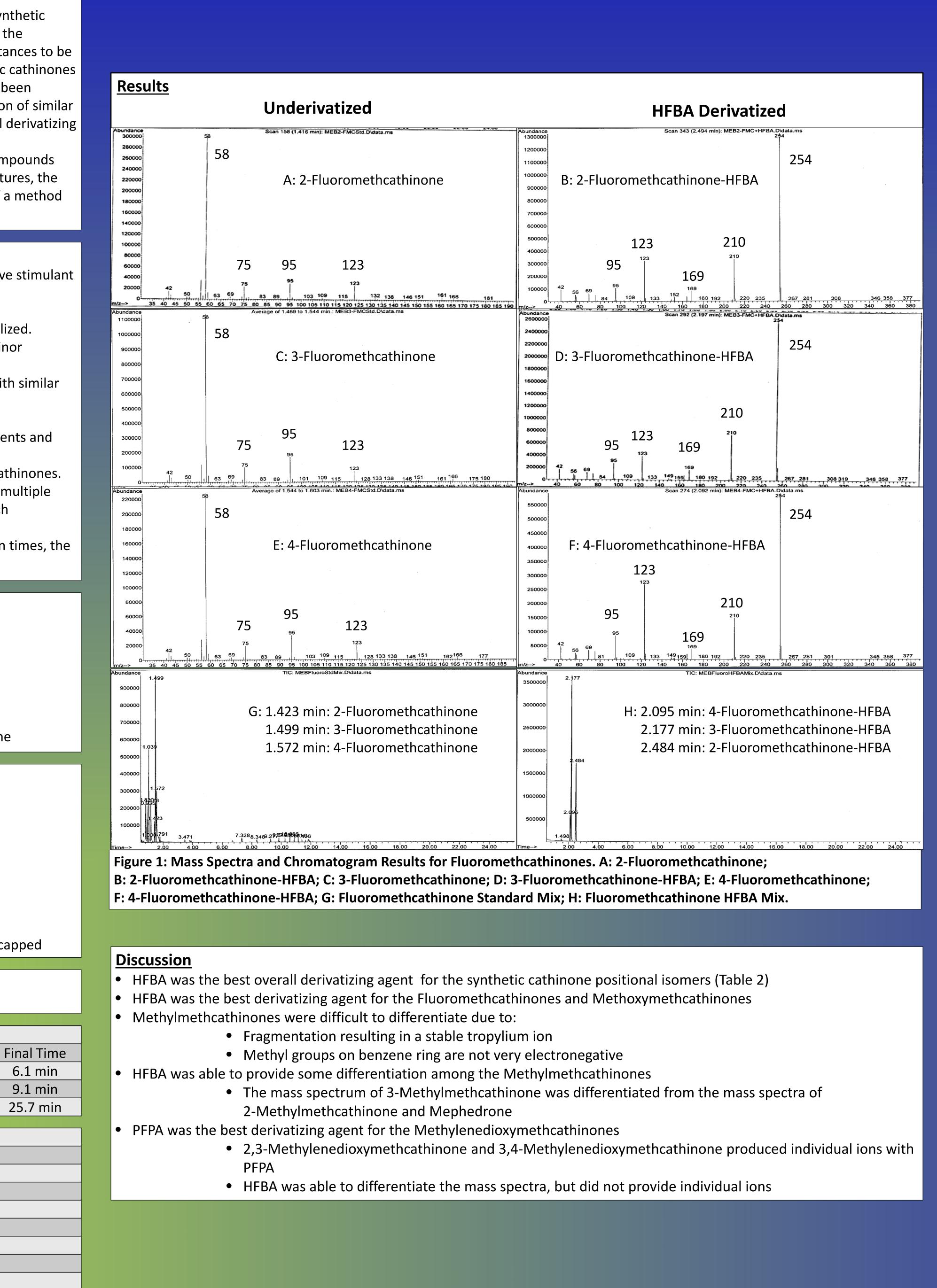
3-Fluoromethcathinone, 4-Fluoromethcathinone

Reagents: Methanol, Ethyl Acetate, Trifluoroacetic anhydride (TFAA), Heptafluorobutyric anhydride (HFBA), Pentafluoropropionic anhydride (PFPA), Pyridine

Methods

Standard Solutions

- Approximately 1 mg standard was dissolved in 300 µL methanol in a GC vial insert Derivatizations
- Approximately 1 mg standard dissolved in 25 µL ethyl acetate in a GC vial
- 100 μL TFAA, HFBA, or PFPA added to vial
- Vial capped; sit for 15 minutes at room temperature
- Solution transferred to open vial and evaporated on a hot plate on low
- Residue was reconstituted with 300 µL ethyl acetate, placed in GC vial insert, and capped


Instrumentation

Agilent Technologies[©] 6890 GC- 5973 MS

Table 1: Column Temperature Program						
Rate	Starting Temperature	Final Temperature Hold Time				
-	140 ºC	140 °C		6.1 min		
20 °C/min	140 ºC		200 °C	0.0 min		
40 °C/min	200 ºC		300 °C	14.1 min		
Table 2: Gas Chromatography-Mass Spectrometry Parameters						
Carrier Gas			Helium			
Flow Rate			0.6 mL/min			
Split Ratio			20:1; 35:1; 50:1			
Injector Temperature			250 °C			
Transfer Line Temperature			290 °C			
Solvent Delay			0.42 min			
Ionization Voltage			70 eV			
Mass Range			40 – 550 m/z			

Development of an Identification and Derivatization Method for Synthetic Cathinones by GC-MS

Michelle Ball^a, BS; Carolyn Trader-Moore^b, MS; Larry Boggs^b, BS; Graham Rankin^a, PhD; Lauren Richards-Waugh^a, PhD ^aMarshall University Forensic Science Center; ^bKentucky State Police Eastern Laboratory Branch (KSP)

Table 3: Perfluoroacyl Derivatizing Agent Results on Synthetic Cathinone Positional Isomer

Groups						
Positional Isomer Group	TFAA	HFBA	PFPA			
Fluoro- methcathinones	Co-elution in a mixture; prevented breakdown; differentiated MS	Compounds resolved in a mixture; prevented breakdown; differentiated MS	Compounds resolved in a mixture; some breakdown observed; differentiated MS			
Methoxy- methcathinones	Compounds not fully resolved in a mixture; prevented breakdown; differentiated MS	Compounds resolved in a mixture; prevented breakdown; differentiated MS	Compounds resolved in a mixture; some breakdown observed; differentiated MS			
Methyl- Methcathinones	Co-elution in a mixture; prevented breakdown; slight differences in MS	Compounds resolved in a mixture; some breakdown observed; 3-MMC MS easily distinguished, slight difference between 2- MMC and Mephedrone MS	Co-elution in a mixture; some breakdown observed; 3-MMC MS easily distinguished, slight difference between 2- MMC and Mephedrone MS			
Methylenedioxy- methcathinones	Compounds resolved in a mixture; some breakdown observed; differentiated MS	Compounds resolved in a mixture; some breakdown observed; differentiated MS	Compounds resolved in a mixture; some breakdown observed; differentiated MS with ions observed at 119 m/z for 2,3-MDMC and 121 m/z for Methylone			

Conclusions & Future Work

The mass spectra of 11 synthetic cathinones were compared to one another before and after derivatization with TFAA, HFBA, and PFPA. HFBA derivatization allowed for differentiation between the mass spectra of positional isomers better than TFAA or PFPA, overall. PFPA was more successful than HFBA or TFAA for the derivatization of the Methylenedioxymethcathinones isomers. When choosing between the three derivatizing agents studied, HFBA provided the best overall results as it was successful in differentiating all of the positional isomers. Future studies will include reproduction of the current results, analysis of more complex cathinone mixtures, and development of a derivatization method for compounds containing tertiary nitrogens.

Acknowledgements

The authors thank the Kentucky State Police Eastern Laboratory Branch for providing reagents and synthetic cathinone standards, instrumentation to analyze the samples, and the time commitment of the analysts in their assistance of the research work.

References

- 185: 10-20.
- Clark CR, Abdel-Hay KM, methylenedioxybenzylpip by GC-IRD and GC-MS. For
- Federal Analogue Act 21
- LaGrone E, Kiyak C, Rodrig Methamphetamine, MDN American Academy of For
- Lum B. Distinguishing Isor Fluoromethcathinone (4-F derivatization. SWAFS Jou
- Lum BJ, Hibbert DB, Brop phenethylamines) by Hept Chromatography Mass Sp
- S3187 amendment of the
- 9, 2012 http://www.gpo.g
- SWGDRUG. *Monographs:* http://www.swgdrug.org/monographs.htm. 2013.

Archer RP. *Fluoromethcathinone, a new substance*. Forensic Science International. 2009;

Awad T, DeRuiter J. <i>Differentiation of</i> Derazines (MDBPs) and methoxymethylbenzylpiperazines (MMBPs) Drensic Science International. 2011; 210: 122-128.
U.S.C. § 813.
iguez G, Rankin JG. Trifluoroacetyl Derivatization of Amphetamine,
MA and Other Controlled Substances with Similar Mass spectra.
rensic Science: Proceedings. 2011; 17(A3): 23.
omers of 3-Fluoromethcathinone (3-FMC) from 4-
FMC) using Heptafluorobutyric anhydride (HFBA) chemical
ournal. 2012; 33: 6-17.
hy J. Identification of Substituted Cathinones (β-keto
otafluorobutyric Anhydride (HFBA) Chemical Derivatization and Gas
pectrometry. SWAFS Journal. 2013; 34: 7-30.
e Federal Food, Drug, and Cosmetic Act (21U.S.C. 301) enacted July
gov/fdsys/pkg/BILLS-112s3187enr/pdf/BILLS-112s3187enr.pdf.
: 2-Fluoromethcathinone. Retrieved from
/monographs.htm. 2013.