
 1

Steganography Analysis: Efficacy and Response-Time
of Current Steganalysis Software
Jordan Green1, B.S., Ian Levstein1, M.S., Cpl. Robert J. Boggs2, Terry Fenger1, Ph.D.
1Marshall University Forensic Science Center
2West Virginia State Police Digital Forensics Unit

Abstract: Steganography, Latin for “covered writing,” is a method of hiding
information within digital media. It is a method of hiding information in plain
sight without detection from unintended recipients. In steganography, a message
is embedded into a carrier or host file through means such as least significant bit
encoding, appending, or watermarking. Many file types including audio, video,
image, and text can be embedded into carrier files of equally diverse formats.
Applications, which are downloadable from the Internet, easily create
steganography, and simple passwords unlock the messages within. Today,
steganography grows more complex with an increase in such open-source
applications, which hide data. As applications become more sophisticated the
need to detect, analyze, and stop the flow of dangerous information becomes more
crucial. Due to the increasing need for steganalysis software, companies like
BackBone Security have developed programs that detect and decode
steganography. StegAlyzerTM is a software program that detects and analyzes
suspect files in order to aid law enforcement in the discovery of evidence that may
condemn criminals. While there are four programs within the StegAlyzerTM suite,
this investigation dealt with its Signature Search (StegAlyzerSSTM) and Artifact
Scanner (StegAlyzerSSTM) due to their abilities to detect steganography
applications and the steganography created from these applications. Several
questions were asked in this study: does analysis time change with different
carrier and message sizes and formats, how well does StegAlyzerASTM detect
multiple steganography applications, and can StegAlyzerSSTM detect
steganography from these applications? For the first question, a free application
named GhostHost was selected to create steganography of differing sizes and
formats. The open-source steganography applications chosen for the latter two
questions were GhostHost, ImageSpyer G2, OpenStego, Steg, Steganography
Studio, Open Puff, Silent Eye, Steghide, and Secret Layer. StegAlyzerASTM was
able to identify signatures from five out of nine applications investigated in this
study and StegAlyzerSS had a success rate of 33% in identifying steganography
created by the applications. StegAlyzerSSTM was also used to analyze the duration
of detection for image steganography created by GhostHost, a steganography
appending, open-source application. Analysis-time fell within the range of 0.15
and 0.25 second regardless of carrier or message file size. A one-way analysis of
variance showed that different carrier and message sizes and formats had no
statistical effect on analysis-time. Further studies should investigate
StegAlyzerTM’s abilities compared to other steganalysis software, such as
WetStone’s StegoHuntTM or open-source steganalysis software such as
Steganography Studio. StegAlyzerTM is an invaluable tool for investigations of
digital crimes, and requires competent analysts to be effective.

 2

Key Words: Steganography, Steganalysis, Investigation

Introduction

Hidden communication has a long history, and as our verbal and written communication

has grown more complex, so has our ability to keep information hidden. Cryptography and

steganography are the products of hidden communication using text or images. While

cryptography is any encoded message, steganography is often more complex. Steganography

stems from the Greek root: “stegos,” or cover, and “grafia,” or writing [4]; it literally translates

to “covered writing” [11]. Steganography’s use is directly related to its translation: hiding

messages within other messages.

The purpose of steganography is to conceal and prevent detection of a secondary, often

unrelated message within an innocent picture or text. Steganography is used by different groups,

and thus may be vehicles for personal privacy or illicit proliferation of data [2]. Cryptography

encodes visible information like bank statements into an unreadable format in an effort to

prevent fraud or tampering; steganography also encodes such information, but additionally hides

the presence of the sensitive data [1]. Due to a perceived lack of security by many Internet users,

steganography has become a viable option to protect sensitive information; on the other hand,

steganography also makes it possible to hide illegal information as well. The issue of detection

from a law-enforcement perspective leads to many problems with the spread of steganography

[2]. For example, it is believed that Bin Laden and recent terrorist cells used steganography

within images to disperse maps and targets [18]. So, while steganography can be a useful tool to

hide important personal information, in the wrong environment it can also be dangerous.

 3

Steganography was developed after the success of cryptography, or coded writing [18].

Cryptography encodes a message by re-ordering the letters into an unreadable format, while

steganography embeds a message within another file, such as an image or audio recording. An

early example of cryptography is Caesar’s letter substitution in government writings. Later, the

Greeks used steganography by scribing messages on slaves’ shaved heads, allowing the hair to

grow, and then sending the slaves to the recipients of the messages. The most secure way of

hiding information is a combination of steganography and cryptography or even more complex

innovations like quantum cryptography, which combines cryptography and physics to alert

senders and recipients of intruders [11]. While these more advanced methods of cryptic

messaging are useful today, modern steganography got its start in the 1980’s.

Steganography became more complex with the advent of computers, and in 1985 it was

implemented through methods such as invisible ink, embedded pictures in video material, and

concealed data via encryption. By the mid 90’s steganography evolved into today’s most

common forms: pure steganography, secret key steganography, and public key steganography

[2]. Pure steganography is the least secure method, because software decryption is readily

available. Secret key steganography is more secure because a key, which decodes the algorithms

used to hide the information, is shared between the sender and recipient. If the key is kept secure,

only those two parties can decipher the message. Finally, public key steganography uses a public

key to encode the information, which is shared between the receiver and the intended recipients

of the steganography. In order to extract the message within the steganography, a private key

must be used. That is, the public key imbeds the information within the carrier file, and the

private key extracts said information. Security is increased because two separate keys are used,

which naturally decreases the chances of both being compromised to unintended recipients.

 4

Today, most steganography creators use the public key method, and choose from over 1,500

steganography applications available on the Internet [2].

The two main components of steganography are the message and the carrier of the

message. Intuitively, the message is what is intended for the receiver of the steganography.

Messages are usually text or images, and in most cases they must be smaller in size than the

carrier. An exception to this rule is appended steganography, which does not have a size

requirement for the message file. The size of the message is referred to as its payload, which

determines the size requirement of the image in which it is embedded. Generally, payloads must

be no more than 16% the size of the carrier, or detection of the steganography may occur. The

medium in which the hidden message is embedded is termed a carrier [11]. Carriers have also

been referred to as cover media or the host media/signal. The carrier is what the general public

sees when the file is opened. Together, the carrier and message comprise the steganography, or

stego [18] and to reveal the message a unique key must be implemented [11]. Carriers can be

text, image, audio, or video files and keys are included within the algorithm that created the

steganography. Recently, steganography has been embedded within packets on a network,

though further research must be done to confirm this [18]. Usually, text files are poor carriers

due to ease of alteration and their compact size. Carrier files are often images because the

changes that occur while steganography is being embedded are generally undetected by the

human eye, can be variable in size, and are not often manipulated [2].

The method for embedding a message within an image carrier is most commonly one of

three methods: altering the least significant bit (LSB), masking and filtering techniques (which

includes watermarking) [2], or appending steganography code to the end of an image file’s code

[6]. Altering the least significant bit places the message’s bits into the least important bit of a

 5

byte. That is, a one or a zero that is non-native to the carrier is placed at the end of a string of

ones and zeroes that are; this is how the message is built. Therefore, for every eight bits (or byte)

within the carrier, the least important bit is part of the hidden message. Because the bits of a

pixel are being changed (for an image carrier), certain pixels within the image will be altered.

Generally, this bit contributes to the brightness of the image or noise within it [18], which may

result in a blue pixel being a darker blue, or a green pixel being a lighter green. These changes,

while indistinguishable in a very large image, can be detected in a small, 8-bit image. For this

reason, it is important to consider the size and complexity of an image when choosing a carrier

for a message. Masking and filtering deal mostly with placing code on top of an image to

increase its size for accommodation of steganography, but not changing the code of the image.

What results is an image that looks tinted or shaded but maintains the integrity of the message

upon alteration of the carrier file [2]. Finally, appending code to the end of an image file involves

the code being physically attached after the completion of the image’s innate code [6]. For

instance, a JPEG viewed in a hex-editor ends when the hex value “FF D9” appears. A computer

interprets the hex code “FF D9” as the end of the file, so anything that appears beyond “FF D9”

has been deliberately appended. For a JPEG image, the steganography code is visible after the

“FF D9” hexadecimal string. This makes appended steganography vulnerable in that a hex-editor

can easily discern the stego without much in-depth analysis. Figure 1 is an example of appended

code after a JPEG image.

 6

Figure 1: Example of Appended Steganography

Appended steganography begins its message code after the completion of the carrier’s code, in this case at hexadecimal
FF D9. A hex-editor can easily detect appended steganography.

While these techniques are the most common methods for steganography creation in images,

audio has also been used as a carrier.

As with image steganography, audio steganography is accomplished through the

execution of several techniques, which differ according to when they are applied to the audio file

(before or after compression to MP3 format). Three methods are low-bit encoding, phase coding,

and spread spectrum coding [3]. Low-bit encoding is much like LSB for images but codes bits

according to lapsed time instead of pixels; noise is likely discernable with low-bit encoding [2];

phase-coding embeds information within sound waves and alters the wave in such a way that the

noise created is imperceptible [3]; and spread spectrum coding uses the entire frequency

 7

spectrum to code and emit the audio [2]. While, audio has a high degree of redundancy within its

data and may be transmitted quickly, steganalysis programs are fairly new for audio files. This

makes the use of steganography through audio file carriers successful. However, while the

immaturity of steganalysis for audio files is an advantage, the immaturity of steganography

algorithms that create audio file steganography is a disadvantage. No matter the arrangement or

formatting of cover objects and their embedded messages, it is important that all steganography

adhere to three basic principles to be effective: imperceptibility, capacity, and robustness [3].

These three fundamental aspects of steganography render it capable or ineffectual

vehicles of elusive message transfer. Imperceptibility is the ability of the steganography to go

undetected in its carrier object, which is possible through use of unique images, very large

images, or audio files with inherent visible or shadow noise. Capacity is the payload, or size of

the message being sent. Boora and Gambhir [4] aptly describe capacity and imperceptibility as at

odds with each other because as capacity increases imperceptibility decreases and visa versa.

Imperceptibility must be minimized and capacity must be maximized in order to optimize the

effect of steganography. Finally, robustness is the ease with which a steganography tool may be

repeatedly used [4]. For steganography to be successful these three principles must be optimally

taken advantage of; otherwise, it may be vulnerable to attack.

The principles of obfuscation are important in that stego, if detected, may be intercepted

and decrypted or tampered with and rendered ineffective. Indeed, even ignorant tampering of

cover images may render the embedded steganography useless. When tampering is intentional,

the process is called steganalysis. There are several means of steganalysis: detection, destruction,

extraction, and modification [4]. Detection is subdivided into passive and active. Passive

detection does not seek to discover the hidden message within steganography; passive detectors

 8

destroy or modify files that are believed to be stego. Active detection is the act of seeking out

and manipulating steganography in an effort to uncover the secret within the stego [18]. Message

extraction occurs when the algorithm used to create the stego is cracked and used to decipher the

message; it is also possible to manually extract data from the image file if the bits used to create

the message are known. These detection and modification methods are generally referred to as

steganalysis. Modification of stego generally refers to changes made to the carrier file that

destroy or cripple the hidden message. Such modifications can be text or formatting changes in a

text carrier, deletion of sound bytes from an audio carrier, or alterations such as cropping in an

image carrier [4]. Figure 2 illustrates a representation of hidden steganography within an image

file. Notice the lattice at the bottom of the image on the left.

 9

Figure 2: Example of Lattice Resulting from LSB Steganography

In least significant bit steganography, a lattice may be observable when running steganalysis software. In this image,
the steganography is contained within the bottom portion of the carrier.

From here, the analyst may passively detect the image by destroying or modifying the lattice

without extracting the message. Conversely, the analyst may use active detection by using a

steganalysis software program to parse the hidden data.

Steganalysis is the detection, and in some cases, the decryption of steganography. There

are many steganography tools available to the public, and many of them can go completely

undetected by today’s steganalysis programs [5]. Generally, steganalysis deals most often with

 10

the decryption of stego in order to recover the hidden message within it. These decryption

methods take advantage of algorithms within the stego, and use statistical approaches to attack it.

Some of these statistical analyses include tests such as the chi-squared test and dual statistical

steganalysis. The chi-squared test makes predictions about patterned pixels within an image; if

one part of the image has the same intensity level throughout, it is probable that there is

steganography within the carrier. While chi-squared testing is relatively basic and can be beaten

by randomly assorted LSB stego, a more sophisticated algorithm known as dual statistical

steganalysis can predict the quantity of pixels that have been altered or flipped. All of the

quantitative attacks for stego take advantage of the fact that changing a bit within a carrier file

leaves a statistical trace. Steganalysis software like StegAlyzerTM uses statistical algorithms to

attack steganography, but they have weaknesses in their programming due to the fact that stego

applications employ varying types of embedding techniques. This problem is rampant with

steganalysis, and the “Artificial Neural Network Technology for Steganography” (ANNTS), a

university-driven initiative, is the first attempt at creating a catchall steganalysis program [5]. As

steganalysis software evolves, evaluation of performance of these techniques lends much to the

practicality of their use within law enforcement settings.

Backbone Security developed StegAlyzerTM, a premier software package that analyzes

signatures of steganography applications and extracts messages from steganography. The

company created three different applications: StegAlyzerASTM, StegAlyzerSSTM, and

StegAlyzerRTSTM. The current research used StegAlyzerSSTM and StegAlyzerASTM to identify

steganography and its associated applications on a host hard-drive.

There is a prevalence of open-source, or free, applications on the Internet that allow

obfuscation of data, and according to the StegAlyzerTM Web site, there are over 1,500

 11

applications available today [15]. For this reason, the current research analyzed multiple

applications to discern the efficacy of StegAlyzerTM. The applications used to create the

steganography are: Image SpyerG2, OpenPuff, OpenStego, SecretLayer, SilentEye, Steg,

GhostHost, Steganography Studio, and Steghide [8-10, 12-17]. These were all downloaded either

from their associated Web sites, third-party Web sites, or as an example case through the

StegAlyzerTM 30-day free trial.

Research Questions:

It is not uncommon for creators of steganography to embed differently formatted stego

within cover files. Image files are the most commonly used covers [5], but it is possible to embed

image or text within them. For this reason, the current research investigated stego within JPEG

and PNG files containing text and image files. This investigation focused on the duration of

analysis for stego files of increasing payload and complexity. In a practical setting, it is

important to understand the time required to process a case. This study also investigated

StegAlyzerASTM’s ability to find artifacts from different applications. According to Backbone

Security’s website, StegAlyzerASTM can identify 1,225 artifacts out of the 1,500 available.

Finally, the investigators examined StegAlyzerSSTM‘s ability to discover steganography from the

applications used in the second analysis. Again, Backbone Security’s website reports that

StegAlyzerSSTM identifies byte patterns from more than 55 applications. Question 1: does the

use of StegAlyzerTM create a backlog when analyzing steganography? The study also

investigated StegAlyzerTM’s efficacy against various stego applications and their steganography.

Question 2: how diverse is StegAlyzerASTM’s library in a contemporary, real-world setting;

Question 3: how well does StegAlyzerSSTM respond to multiple sources of steganography? The

researchers hypothesize that a change in carrier and message sizes and formats will affect

 12

analysis time, that StegAlyzerASTM will identify artifacts from 80% of the applications installed

onto a computer, and that StegAlyzerSSTM will identify more than 3% of the steganography

created from applications.

Materials and Methods
Scenario 1: Detection-time of Steganography within Different Media using StegAlyzerSSTM
 All applications used in Scenario 1 were downloaded and implemented on a Dell

Optiplex 990 with a Core i7-2600 processor, running 64-bit Windows 7 Enterprise operating

system. Text documents were created using Microsoft Word 2010. All carrier and message sizes

and formats used for the experiment are represented in Appendix A.

 Ten different images were duplicated and altered to create the seven batches used to test

the analysis-time of StegAlyzerTM for different message formats and sizes. The JPG images were

all 5MB in size and each batch contained differently sized and formatted message files. The

messages were document files (RouxRunSm.doc, RouxRunLge.doc), Joint Photographic Experts

Group (JPG) images (StegoSml.jpg, StegoLge.jpg), and Portable Network Graphics (PNG)

images (StegoSml.png and StegoLge.png).The batches were organized as outlined in Appendix

B: the Control batch contained no embedded steganography, Batch 1 a 34KB text file (.doc),

Batch 2 a 103KB text file (.doc), Batch 3 a 1MB JPEG image, Batch 4 a 10MB JPEG image,

Batch 5 a 1MB PNG image, and Batch 6 a 10MB PNG image.

 To test analysis-time of different carrier sizes and formats, the same ten images were

used, but altered to three different size categories and two formats: 1MB JPG, 5MB JPG, 10MB

JPG, 1MB PNG, 5MB PNG, and 10MB PNG. These two image extensions were used because

PNG is an uncompressed format, while JPG is a form of lossy compression. These compression

differences are important because they impart different size formatting, and thus can affect

analysis time for StegAlyzerSSTM software. Further, PNG and JPG are equally ubiquitous image

 13

formats, so sampling from them is intrinsically significant to real-world applications. The

embedded message file was a 5MB JPG image. The results of this analysis are depicted in

Appendix C.

Ghost Host v1.0.1.1 (©1998 Kelce Wilson) was used to create the steganography for

each image. Note that GhostHost is a steganography appending application, and not a least

significant bit encoding application, so there were no size requirements for the message or carrier

files.

 All images were captured with an iPhone 5 using iOS v7.1.1. The images were resized

using Apple’s “Preview” application on a Mac Powerbook running iOS 10 Mavericks. The

images were transferred (via a Kingston 16 GB thumb drive) and saved onto the PC in PNG and

JPG formats. Original image sizes ranged from 0.98 MB to 9.81 MB, as depicted in Appendix A.

The steganography files were analyzed using Backbone Security’s StegAlyzerSSTM v3.91

(x86). Analysis times of each image and batch of images were recorded using the iPhone 5’s

native stopwatch application by simultaneously activating the stopwatch and StegAlyzerSSTM

and deactivating the stopwatch after the appearance of StegAlyzerTM’s completion prompt.

Each analysis attempted signature, append, and LSB analyses. JPEG images yielded

results for the signature search and append analysis, while PNG images yielded only signature

search results. Note: LSB analysis was not expected to occur due to the nature of GhostHost’s

steganography-appending functionality.

The elapsed times of each batch were then statistically analyzed. Variances of each batch

were recorded, and a one-way Analysis of Variance (ANOVA, α = 0.05) was performed to

discern any differences among the batches (Method 1: N = 70, n = 10; Method 2: N = 120, n =

 14

10). All statistical analyses were conducted on the Optiplex computer using Microsoft Excel

2010.

Scenario 2: Detection of Multiple Steganography Applications using StegAlyzerASTM
All applications used in Scenario 2 were downloaded and implemented on a Dell Inspiron

1520 with an Intel CoreTM2 Duo processor, running Microsoft Windows 7 Enterprise.

Nine open-source steganography applications were downloaded from the Internet, chosen

based their abilities to create image carriers, the amount of inherent malware within the

executable files, and the availability of the software from online sources. These applications

were: Image SpyerG2, OpenPuff, OpenStego, SecretLayer, SilentEye, Steg, GhostHost,

Steganography Studio, and Steghide [8-10, 12-17]. Each of these applications embedded

steganography using either the LSB or appending method, and each one created image

steganography. These applications were chosen based on the likelihood that most steganography

users would find them the easiest, most ubiquitous, and least harmful applications for their

systems.

These applications were then added to an empty folder titled “Steganography

Applications.” The entire folder was subsequently scanned using StegAlyzerASTM.

Scenario 3: Detection of Steganography of varying Applications using StegAlyzerSSTM

Steganography was created on the Optiplex 990 from Scenario 1. Six applications were

used to create steganography. These applications were: Image SpyerG2, Open Puff, Open Stego

Secret Layer, Steg, Ghost Host, and Steganography Studio [8-10, 12, 14, 15, 16]. The same

image file (StegoLge.jpg, 9.764 MB) was imbedded with either a .doc file (RouxRunLg.doc, 103

KB) or a .txt file (Roux.txt, 1KB) depending on the capacity of the carrier file assigned by the

application. These images were then placed in a folder and transferred to the Inspiron 1520 for

analysis with StegAlyzerSSTM. From there, StegAlyzerSSTM detected signatures specific to the

 15

application used to create the steganography, the use of LSB-steganography, or appended

steganography.

Results and Discussion
Scenario 1:
 Figure 3 shows each image used in the detection runs and steganography creation. Figure

4 provides the text and images used as stego messages.

Figure 3: Carrier Images

Gallop Goat Holiday NoseKnows RouxRun

Run Sleep Speak Stick Tilt

 16

Figure 4: Steganography Message Files

The steganography size specifications, image details, and raw results are provided in

Appendices B and C. Figures 5 and 6 are the resulting relationships between the control and

image analysis times, and are organized based on treatment group (all described in Appendices B

and C). Figure 5 represents the trend-lines of each batch and corresponding control.

RouxRunLge.doc RouxRunSml.doc

StegoLge.jpg, 9.764 MB

StegoSml.jpg, 1.007 MB

StegoLge.png, 9.740 MB

StegoSml.png, 1.003 MB

 17

Figure 5: Method 1, StegAlyzerTM Analysis-Time of Steganography with Different Message
Sizes and Formats

Run-times of analyzed images. Carrier images were 5 MB JPEGs (n = 10). Batch 1 was embedded with a 34 KB .doc file; Batch 2, a 103 KB .doc
file; Batch 3, a 1 MB JPG file; Batch 4, a 10 MB JPG image; Batch 5, a 1 MB PNG image; Batch 6, a 10 MB PNG image. The control had no
embedded media

Figure 6 is the average of the durations from each group compared to the average of the

same size with no steganography embedded within. The largest steganography files were 14.7

MB. The smallest steganography file was 4.88MB. As shown in Appendix A, the size categories

ranged from 0.98 to 1.03 (1 MB size), 4.85 to 4.92 (5 MB size), and 9.73 to 9.80 (10 MB size).

0.15

0.17

0.19

0.21

0.23

0.25

0.27

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Control

A
na

ly
si

s T
im

e
(s

)

Message File

Analysis Time of Differing Message Sizes and
Formats

 18

Figure 6: Method 2, Average StegAlyzerSSTM Analysis-Time of Steganography with Different
Carrier Sizes and Formats

The average run-times for each group of images (n = 10). Experimental images were embedded with the same JPG image, 5 MB in size. JPG Sml
and PNG Sml represent an image size of 1 MB of corresponding image formats; JPG Med and PNG Med were 5 MB in size; JPG Lge and PNG
Lge were images 10 MB in size. Controls had no embedded message images.

Figures 5 and 6 also provide detection durations for each image. Note that none of the

analyses lasted longer than half of one second. The longest analysis was 0.26 of a second from

Method 1 (RunMed.jpg with embedded StegoLge.jpg message) and the shortest was 0.15 of a

second from multiple images from both Method 1 and 2.

0

0.05

0.1

0.15

0.2

0.25

00001 00002 00003 00004 00005 00006

A
na

ly
sis

 T
im

e
(s

)

Carrier Size

Average Duration of Analysis Time for
Steganography

Test Duration

Control Duration

JPG Sml JPG Med JPG Lge PNG Sml PNG Med PNG Lge

 19

With such a limited range of analysis duration, 0.11 of a second, statistical analysis has a

likelihood of misrepresenting the impact of variation within analysis time. That is, in a practical

setting the difference between 0.15 of a second and 0.26 of a second may go unnoticed, where a

statistical analysis may suggest a significant difference between the two values depending on

population size. That being said, statistical analyses of the data are provided in Table 1. The

averages of the groups ranged from 0.174 of a second (Batch 6 from Method 1) to 0.201 of a

second (Batch 2 from Method 2). The F value for Method 1 was 0.870643 for an F critical of

2.24641. The F value for Method 2 was 0.549979 for an F critical of 1.87838. This suggests that

neither method differed significantly enough for the batches to be considered unique from each

other. Qualitatively, each analysis seemed to be instantaneous.

Table 1: Statistical Analyses of StegalyzerSSTM Steganography Detection Duration

Groups Count Sum Average Variance
Method 1

Batch 1 10 1.93 0.193 0.000734444
Batch 2 10 1.99 0.199 0.001565556
Batch 3 10 1.87 0.187 0.000867778
Batch 4 10 1.87 0.187 0.001067778
Batch 5 10 1.9 0.19 0.000266667
Batch 6 10 1.74 0.174 0.001071111
Control 10 1.99 0.199 0.000387778

 Method 2
 JPGSml 10 1.86 0.186 0.000293333

JPGMed 10 2.01 0.201 0.000432222
JPGLge 10 1.9 0.19 0.000488889
PNGSml 10 1.8 0.18 0.000177778
PNGMed 10 1.86 0.186 0.000426667
PNGLge 10 1.87 0.187 0.000312222
CtrlJPGSml 10 1.87 0.187 0.000312222
CtrlJPGMed 10 1.92 0.192 0.000706667
CtrlJPGLge 10 1.88 0.188 0.000573333
CtrlPNGSml 10 1.9 0.19 0.000466667
CtrlPNGMed 10 1.92 0.192 0.000706667

CtrlPNGLge 10 1.92 0.192 0.000662222

 20

ANOVA df F P-Value F-crit
Method 1

Between Groups 6 0.870643 0.521549 2.24641
Within Groups 63
Total 69

Method 2
Between Groups 11 0.549979 0.864675 1.87838
Within Groups 108
Total 119

Scenario 2:
 Of the applications StegAlyzerASTM scanned, five out of the nine applications were

discovered: Steghide, SilentEye, OpenPuff, Virtual, GhostHost, and Steganography Studio. The

full details of the applications including the method of obfuscation, carrier file format, and ability

of StegAlyzerASTM to discover it are detailed in Table 2.

Table 2: Application Analysis by StegAlyzerASTM
Application Embed Method Embed within StegAlyzerASTM Detection

 SecretLayer LSB PNG No
SilentEye LSB BMP, WAV Yes
GhostHost Append All images, audio,

text, and video
Yes

ImageSpyerG2 LSB - robust
soliton distribution

BMP, TIF No

OpenPuff LSB - non-linear
coding

BMP, JPG, PCX,
PNG, TGA, AIFF,
MP3, NEXT/SUN,
WAV, 3GP, MP4,
MPG, VOB, FLV,
SWF, PDF

Yes

OpenStego LSB,
Watermarking

JPG, TXT, PNG, BMP No

Steg LSB JPG, TIF, PNG, BMP,
PPM

No

 21

SteganographyStudio LSB BMP, PNG, GIF Yes
Steghide LSB – non-linear

coding
JPG, BMP, WAV, AU Yes

Scenario 3:
 StegAlyzerSSTM detected two of the six steganography images (ImageSpyerG2.bmp and

GhostHost.jpg). Steganography Studio crashed during each of three attempts to embed a message

into the carrier, and so was removed from analysis. Details of the steganography sizes, carrier

image and size, message file and size, and capability of identification via StegAlyzerSSTM are

depicted in Table 3.

Table 3: Steganography Analysis by StegAlyzerSSTM
Steganography
Application Cover Image Message Steganography File

StegAlyzerSSTM
Detection

SecretLayer StegoLge.jpg,
9.764 MB

RouxRunLge
.doc, 105 KB

SecretLayer.jpg,
9.764 MB

No

GhostHost StegoLge.jpg,
9.764 MB

RouxRunLge
.doc, 105 KB

GhostHost.jpg,
9.867 MB

SS, Append

ImageSpyer G2 StegoLge.jpg,
9.764 MB

Roux.txt, 1
KB

ImageSpyerG2.bmp,
62.53 MB

LSB

OpenPuff StegoLge.jpg,
9.764 MB

Roux.txt, 1
KB

OpenPuff.jpg,
9.764 MB

No

OpenStego StegoLge.jpg,
9.764 MB

RouxRunLge
.doc, 105 KB

OpenStego.png,
9.740 MB

No

Steg StegoLge.jpg,
9.764 MB

RouxRunLge
.doc, 105 KB

Steg.jpg,
9.762 MB

No

Steganography
Studio

NA NA NA NA

Conclusions

 The concept of hiding information in plain sight is not new to civilization and the current,

most efficient method of doing so is through steganography. Today, steganography has the

potential of being a sophisticated and highly effective means of hiding information, licit or not.

As steganography becomes more and more popular with criminals, data hiding becomes easier

and more diverse. Various steganalysis programs seek to demystify this new method of

 22

information hiding, and in so doing thwart would-be criminals. StegAlyzerTM has the ability to

discover steganography applications and to unveil their messages. Fortunately, investigations are

not encumbered by the analysis of files that vary in size and complexity, as images as large as 10

MB are detected and analyzed in less than one quarter of a second. Further, StegAlyzerASTM

discovered the majority of applications searched in this investigation and steganography was

uncovered 33% of the time by StegAlyzerSSTM. In all, StegAlyzerTM proved to be an efficient

program, though there is work to be done in regards to detecting the plethora of steganography

applications on the Web, any of which may be installed on a given user’s home computer.

Additional research should investigate the comparison of StegAlyzerTM to various steganalysis

tools available such as Wetstone’s StegoHuntTM and Steganography Studio’s [16] steganalysis

function, the abilities of steganalysis tools to detect and decrypt non-linear RSD steganography,

and StegAlyzerTM’s detection capabilities with files much larger than those investigated in the

current study.

Acknowledgements

 We thank Backbone Security, specifically Chad Davis, for his support and

correspondence throughout the investigation. We also thank Dr. Lauren Richards-Waugh for

statistical assistance. Finally, we thank Roux, the poodle, for donating his images for use in this

project.

Limitations of Study:

The StegAlyzerTM software was procured as a 30-day trial and thus may not have functioned

completely akin to the full, licensed product.

 23

References
[1] Aggarwal S, Jaiswal U. Kryptos+Graphein= Cryptography. Int J Eng Sci Technol

2011;3(9):7080-4.

[2] Ashok J, Raju Y, Munishankaraiah S, Srinivas K. Steganography: An Overview. Int J
Eng Sci Technol 2010;2(10):5985-92.

[3] Atoum MS, Ibrahim S, Sulong G, M-Ahmad A. MP3 Steganography: Review. Int J
Comput Sci 2012;9(6):236-44.

[4] Boora M, Ghambir F. Binary Image Steganography. Int J Recent Technol Eng
2013;2(5):126-31.

[5] Cheddad A, Condell J, Curran K, McKevitt P. Digital Image Steganography: Survey
and analysis of current methods. Sign Proc 2010;90(3):728-50.

[6] Fogie S. Steganography. Informit.com. Pearson Education 2014. Accessed: June 25,
2014.

[7] Gadichal AB. Audio Wave Steganography. Int J Soft Comput Eng 2011;1(5):174-6.

[8] Image SpyerG2. ITNTSRL. http://imagespyer-g2.soft32.com/. Accessed June 03,
2014.

[9] Open Puff. Embedded
SW. http://embeddedsw.net/OpenPuff_Steganography_Home.html. Accessed
June 03, 2014.

[10] Open Stego. GNU. http://www.openstego.info/. Accessed June 03, 2014.

[11] Raphael J, Sundaram V. Cryptography and Steganography – A Survey. Int J Comput
Tech Appl 2011;2(3):626-30.

[12] Secret Layer Steganography. Easy Sector. http://www.steganographypro.com/.
Accessed June 03, 2014.

[13] Silent Eye. http://www.silenteye.org/. Accessed June 03, 2014.
[14] Steg. Drupal Gardens. http://steg.drupalgardens.com/. Accessed June 03, 2014.

[15] Steganography Analysis and Research Center. www.sarc-wv.com. BackBone Security

2014. Accessed: June 03, 2014.
[16] Steganography Studio. Source Forge. http://stegstudio.sourceforge.net/.

Accessed June 03, 2014.

[17] Steghide. http://steghide.sourceforge.net/. Accessed June 03, 2014.

[18] Yugala K. Steganography. Int J Eng Trends Technol 2013;4(5):1629-35.

http://imagespyer-g2.soft32.com/
http://embeddedsw.net/OpenPuff_Steganography_Home.html
http://www.openstego.info/
http://www.steganographypro.com/
http://steg.drupalgardens.com/
http://stegstudio.sourceforge.net/

 24

Appendix A: Parent Image and Message Sizes and Formats
File Name Extension Size (MB) File Name Extension Size (MB)
GallopLge .jpg 9.80 RunLge .jpg 9.74
GallopMed .jpg 4.87 RunMed .jpg 4.86
GallopSml .jpg 1.01 RunSm .jpg 1.01
GoatLge .jpg 9.76 SleepLge .jpg 9.80
GoatMed .jpg 4.85 SleepMed .jpg 4.91
GoatSml .jpg 0.98 SleepSm .jpg 0.98
HolidayLge .jpg 9.81 SpeakLge .jpg 9.76
HolidayMed .jpg 4.85 SpeakMed .jpg 4.89
HolidaySml
NoseKnowsLge
NoseKnowsMed
NoseKnowsSml
RouxRunLge
RouxRunMed
RouxRunSml

.jpg
,jpg
.jpg
.jpg
.jpg
.jpg
.jpg

1.01
9.76
4.89
1.01
9.74
4.92
1.01

SpeakSm
StickLge
StickMed
StickSml
TiltLge
TiltMed
TiltSml

.jpg

.jpg

.jpg

.jpg

.jpg

.jpg

.jpg

0.99
9.78
4.87
1.02
9.80
4.90
0.99

GallopLge .png 9.73 RunLge .png 9.76
GallopMed .png 4.86 RunMed .png 4.92
GallopSml .png 1.01 RunSm .png 1.00
GoatLge .png 9.77 SleepLge .png 9.77
GoatMed .png 4.90 SleepMed .png 4.90
GoatSml .png 1.01 SleepSm .png 1.01
HolidayLge .png 9.73 SpeakLge .png 9.74
HolidayMed .png 4.85 SpeakMed .png 4.85
HolidaySml
NoseKnowsLge
NoseKnowsMed
NoseKnowsSml
RouxRunLge
RouxRunMed
RouxRunSml

.png

.png

.png

.png

.png

.png

.png

1.03
9.76
4.87
1.00
9.76
4.91
1.02

SpeakSm
StickLge
StickMed
StickSml
TiltLge
TiltMed
TiltSml

.png

.png

.png

.png

.png

.png

.png

1.00
9.77
4.90
1.01
9.80
4.85
1.02

RouxRunSm .doc 0.03 StegoLge .jpg 9.76
RouxRunLg .doc 0.105 StegoSml .png 1.00
StegoSml
StegoMed

.jpg

.jpg
1.01
4.89

StegoLge .png 9.74

Appendix B: Embedded Steganography Image Sizes and Formats of Method 1
Carrier Name File Ext. Message File Stego Size

(MB)
StegAlyzerTM
Analysis Time (s)

Control
GallopMed
GoatMed
HolidayMed
NoseKnowsMed

JPG
JPG
JPG
JPG

None
None
None
None

None
None
None
None

0.19
0.20
0.20
0.19

 25

RouxRunMed
RunMed
SleepMed
SpeakMed
StickMed
TiltMed

JPG
JPG
JPG
JPG
JPG
JPG

None
None
None
None
None
None

None
None
None
None
None
None

0.19
0.17
0.23
0.18
0.21
0.23

Batch 1
GallopMed
GoatMed
HolidayMed
NoseKnowsMed
RouxRunMed
RunMed
SleepMed
SpeakMed
StickMed
TiltMed

JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG

.doc, 34 KB
.doc, 34 KB
.doc, 34 KB
.doc, 34 KB
.doc, 34 KB
.doc, 34 KB
.doc, 34 KB
.doc, 34 KB
.doc, 34 KB
.doc, 34 KB

4.91
4.89
4.88
4.92
4.96
4.89
4.95
4.92
4.90
4.93

0.25
0.21
0.21
0.16
0.16
0.18
0.20
0.18
0.18
0.20

Batch 2
GallopMed
GoatMed
HolidayMed
NoseKnowsMed
RouxRunMed
RunMed
SleepMed
SpeakMed
StickMed
TiltMed

JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG

.doc, 103 KB
.doc, 103 KB
.doc, 103 KB
.doc, 103 KB
.doc, 103 KB
.doc, 103 KB
.doc, 103 KB
.doc, 103 KB
.doc, 103 KB
.doc, 103 KB

4.98
4.95
4.95
4.99
5.02
4.96
5.02
4.99
4.97
5.00

0.25
0.16
0.20
0.25
0.21
0.15
0.25
0.18
0.18
0.16

Batch 3
GallopMed
GoatMed
HolidayMed
NoseKnowsMed
RouxRunMed
RunMed
SleepMed
SpeakMed
StickMed
TiltMed

JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG

.jpg, 1.01MB
.jpg, 1.01 MB
.jpg, 1.01 MB
.jpg, 1.01 MB
.jpg, 1.01 MB
.jpg, 1.01 MB
.jpg, 1.01 MB
.jpg, 1.01 MB
.jpg, 1.01 MB
.jpg, 1.01 MB

5.88
5.86
5.86
5.89
5.93
5.86
5.92
5.90
5.87
5.90

0.18
0.18
0.21
0.25
0.18
0.20
0.16
0.20
0.16
0.15

Batch 4
GallopMed
GoatMed
HolidayMed
NoseKnowsMed
RouxRunMed
RunMed
SleepMed

JPG
JPG
JPG
JPG
JPG
JPG
JPG

.jpg, 9.76 MB
.jpg, 9.76 MB
.jpg, 9.76 MB
.jpg, 9.76 MB
.jpg, 9.76 MB
.jpg, 9.76 MB
.jpg, 9.76 MB

14.6
14.6
14.6
14.7
14.7
14.6
14.7

0.18
0.18
0.16
0.16
0.18
0.26
0.18

 26

SpeakMed
StickMed
TiltMed

JPG
JPG
JPG

.jpg, 9.76 MB

.jpg, 9.76 MB

.jpg, 9.76 MB

14.7
14.6
14.7

0.16
0.23
0.18

Batch 5
GallopMed
GoatMed
HolidayMed
NoseKnowsMed
RouxRunMed
RunMed
SleepMed
SpeakMed
StickMed
TiltMed

JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG

.png, 1.00 MB
.png, 1.00 MB
.png, 1.00 MB
.png, 1.00 MB
.png, 1.00 MB
.png, 1.00 MB
.png, 1.00 MB
.png, 1.00 MB
.png, 1.00 MB
.png, 1.00 MB

5.76
5.85
5.85
5.90
5.92
5.86
5.92
5.89
5.87
5.90

0.18
0.20
0.18
0.20
0.16
0.21
0.20
0.18
0.21
0.18

Batch 6
GallopMed
GoatMed
HolidayMed
NoseKnowsMed
RouxRunMed
RunMed
SleepMed
SpeakMed
StickMed
TiltMed

JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG
JPG

.png, 9.74 MB
.png, 9.74 MB
.png, 9.74 MB
.png, 9.74 MB
.png, 9.74 MB
.png, 9.74 MB
.png, 9.74 MB
.png, 9.74 MB
.png, 9.74 MB
.png, 9.74 MB

14.6
14.6
14.6
14.6
14.7
14.6
14.7
14.6
14.6
14.6

0.25
0.16
0.15
0.16
0.20
0.15
0.20
0.15
0.16
0.16

Appendix C: Steganography Image Size, Format, and Analysis Time with Method 2
Steganography Image Size

(MB)
Analysis
Time (s)

Steganography Image Size
(MB)

Analysis
Time (s)

JPG PNG
Control Control

GallopSml 5.90 0.20 GallopSml 5.90 0.15
GoatSml 5.90 0.18 GoatSml 5.90 0.18
HolidaySml 5.90 0.20 HolidaySml 5.91 0.21
NoseKnowsSml 5.90 0.16 NoseKnowsSml 5.89 0.18
RouxRunSml 5.90 0.20 RouxRunSml 5.91 0.18
RunSml 5.90 0.18 RunSml 5.88 0.18
SleepSml 5.87 0.21 SleepSml 5.90 0.23
SpeakSml 5.88 0.20 SpeakSml 5.89 0.19
StickSml 5.91 0.18 StickSml 5.90 0.20
TiltSml 5.88 0.16 TiltSml 5.91 0.20

Control Control
GallopMed 9.76 0.16 GallopMed 9.75 0.16
GoatMed 9.74 0.18 GoatMed 9.78 0.21
HolidayMed 9.74 0.16 HolidayMed 9.74 0.16

 27

NoseKnowsMed 9.78 0.25 NoseKnowsMed 9.75 0.25
RouxRunMed 9.81 0.20 RouxRunMed 9.80 0.18
RunMed 9.75 0.21 RunMed 9.80 0.20
SleepMed 9.80 0.18 SleepMed 9.80 0.20
SpeakMed 9.78 0.18 SpeakMed 9.74 0.20
StickMed 9.76 0.20 StickMed 9.79 0.18
TiltMed 9.79 0.20 TiltMed 9.74 0.18

Control Control
GallopLge 14.7 0.16 GallopLge 14.6 0.20
GoatLge 14.7 0.18 GoatLge 14.7 0.20
HolidayLge 14.7 0.20 HolidayLge 14.6 0.18
NoseKnowsLge 14.7 0.16 NoseKnowsLge 14.7 0.16
RouxRunLge 14.6 0.20 RouxRunLge 14.6 0.18
RunLge 14.7 0.21 RunLge 14.7 0.20
SleepLge 14.7 0.18 SleepLge 14.7 0.20
SpeakLge 14.7 0.20 SpeakLge 14.6 0.19
StickLge 14.7 0.23 StickLge 14.7 0.25
TiltLge 14.7 0.16 TiltLge 14.7 0.16

JPG PNG
Batch 1 Batch 4

GallopSml 5.90 0.20 GallopSml 5.90 0.18
GoatSml 5.90 0.15 GoatSml 5.90 0.20
HolidaySml 5.90 0.18 HolidaySml 5.91 0.16
NoseKnowsSml 5.90 0.18 NoseKnowsSml 5.89 0.18
RouxRunSml 5.90 0.18 RouxRunSml 5.91 0.20
RunSml 5.90 0.20 RunSml 5.88 0.18
SleepSml 5.87 0.20 SleepSml 5.90 0.16
SpeakSml 5.88 0.18 SpeakSml 5.89 0.18
StickSml 5.91 0.18 StickSml 5.90 0.18
TiltSml 5.88 0.21 TiltSml 5.91 0.18

Batch 2 Batch 5
GallopMed 9.76 0.20 GallopMed 9.75 0.16
GoatMed 9.74 0.25 GoatMed 9.78 0.21
HolidayMed 9.74 0.18 HolidayMed 9.74 0.16
NoseKnowsMed 9.78 0.18 NoseKnowsMed 9.75 0.18
RouxRunMed 9.81 0.20 RouxRunMed 9.80 0.16
RunMed 9.75 0.21 RunMed 9.80 0.20
SleepMed 9.80 0.20 SleepMed 9.80 0.20
SpeakMed 9.78 0.20 SpeakMed 9.74 0.21
StickMed 9.76 0.21 StickMed 9.79 0.18
TiltMed 9.79 0.18 TiltMed 9.74 0.20

Batch 3 Batch 6
GallopLge 14.7 0.18 GallopLge 14.6 0.21
GoatLge 14.7 0.16 GoatLge 14.7 0.16
HolidayLge 14.7 0.23 HolidayLge 14.6 0.16
NoseKnowsLge 14.7 0.21 NoseKnowsLge 14.7 0.20

 28

RouxRunLge 14.6 0.20 RouxRunLge 14.6 0.18
RunLge 14.7 0.20 RunLge 14.7 0.18
SleepLge 14.7 0.16 SleepLge 14.7 0.20
SpeakLge 14.7 0.18 SpeakLge 14.6 0.18
StickLge 14.7 0.18 StickLge 14.7 0.20
TiltLge 14.7 0.20 TiltLge 14.7 0.20

