Determination of CB1 Receptor Activity for Emerging Synthetic Cannabinoid Compounds

Docoda Nunnery B.S.1; Richard Egleton Ph.D.2; Pamela Staton Ph.D.1; Lauren Waugh Ph.D.1

1Marshall University Forensic Science Center, 1401 Forensic Science Drive, Huntington, WV 25701
2Marshall University School of Medicine, Department of Pharmacology, Physiology and Toxicology, Huntington, WV 25701

Abstract

With the passing of The Synthetic Drug Abuse Prevention Act on July 9, 2012, synthetic cannabinoids have been put on to Schedule I of the Controlled Substances Act based on their structure, CB1 receptor binding and functionality. Through the years, synthetic cannabinoid structures became more and more diverse to avoid illegal classification, thus putting more emphasis onto the receptor binding and functionality characteristics. The purpose of this study is to investigate CB1 receptor activity by measuring the ability of a known CB1 receptor agonist to inhibit forskolin induced cAMP levels in GH4C1 cells, and use this information to aid in synthetic cannabinoid classification.

The %B/Bo of each sample was calculated and plotted against agonist concentrations of 0.2nM, 2nM, and 4nM. Using GraphPad ©, statistical differences of %B/Bo values of the agonist concentration ranges 0.2 nM-4 nM and 2 nM-4 nM were found, and the overall goal of the study was accomplished. Future studies include method optimization and determination of receptor binding constants.

Materials and Methods

1. Cultured GH4C1 rat pituitary cancer cells
 -Have only CB1 receptors
2. Transferred to 96 well plate at ~100,000 cells/well
 -Incubated overnight to acclimate to environment
3. Performed ELISA assay for cAMP
 - Amersham cAMP Biotrax EIA System ©

4. Protein Binding Normalization
 -Thermoscientific Pierce BCA Protein Assay Kit
5. Biotek Synergy 2 Multi Mode Microplate Reader
6. Calculated %B/Bo, using the following equation

\[\text{%B/Bo} = \left(\frac{c_{	ext{agonist}} - c_{	ext{Bo}}}{c_{	ext{Bo}}} \right) \times 100 \]

7. Statistical Analysis
 -GraphPad ©.

Results

![Graph showing cAMP assay results](image)

Discussions and Conclusions

An ANOVA showed a significant difference between the %B/Bo values for all three concentrations of CP 55940 as indicated by an F of 5.91 (p = 0.01). A Tukey test was then performed to make comparisons between each of the individual concentrations.

There were significant differences between the 0.2 nM-4 nM and 2 nM-4 nM concentrations of CP 55940, however the %B/Bo values were not significant different between the 0.2 nM and 2 nM concentrations. It is possible to demonstrate CB1 agonist activity by inhibiting forskolin induced cAMP levels in GH4C1 cells.

Future studies will include method optimization with a greater sample size, with the goal of increasing the significant difference between %B/Bo values amongst the concentrations of CP 55940 to develop a model for use with compounds with unknown CB1 receptor activity.

Introduction

In 2006, a new psychoactive drug known as “Spice” was quickly gaining popularity. With its roots in Western European countries and its reputation for delivering a legal high, it quickly spread to the United States. The active components were synthetic cannabinoids.

Synthetic cannabinoids are a large family of chemically unrelated structures functionally similar to the active compound of cannabis, Δ9-tetrahydrocannabinol.

At the molecular level, these compounds bind to the same cannabinoid receptors as Δ9-tetrahydrocannabinol in the endocannabinoid system, CB1, and CB2.

These compounds are known to inhibit the production of cAMP by negatively regulating production of cAMP by negatively regulating

Acknowledgements

The author thanks Dr. Lauren Waugh for her patience and kind guidance, Dr. Richard Egleton for cellular supervision, troubleshooting solutions and interpretations, and Evan Thompson for his technical assistance.

References

Materials and Methods

- Cultured GH4C1 rat pituitary cancer cells
- Transferred to 96 well plate at ~100,000 cells/well
- Incubated overnight to acclimate to environment
- Performed ELISA assay for cAMP

Results

![Graph showing cAMP assay results](image)

Discussion and Conclusions

An ANOVA showed a significant difference between the %B/Bo values for all three concentrations of CP 55940 as indicated by an F of 5.91 (p = 0.01). A Tukey test was then performed to make comparisons between each of the individual concentrations.

There were significant differences between the 0.2 nM-4 nM and 2 nM-4 nM concentrations of CP 55940, however the %B/Bo values were not significant different between the 0.2 nM and 2 nM concentrations. It is possible to demonstrate CB1 agonist activity by inhibiting forskolin induced cAMP levels in GH4C1 cells.

Future studies will include method optimization with a greater sample size, with the goal of increasing the significant difference between %B/Bo values amongst the concentrations of CP 55940 to develop a model for use with compounds with unknown CB1 receptor activity.

Acknowledgements

The author thanks Dr. Lauren Waugh for her patience and kind guidance, Dr. Richard Egleton for cellular supervision, troubleshooting solutions and interpretations, and Evan Thompson for his technical assistance.

References

Materials and Methods

- Cultured GH4C1 rat pituitary cancer cells
- Transferred to 96 well plate at ~100,000 cells/well
- Incubated overnight to acclimate to environment
- Performed ELISA assay for cAMP

Results

![Graph showing cAMP assay results](image)

Discussion and Conclusions

An ANOVA showed a significant difference between the %B/Bo values for all three concentrations of CP 55940 as indicated by an F of 5.91 (p = 0.01). A Tukey test was then performed to make comparisons between each of the individual concentrations.

There were significant differences between the 0.2 nM-4 nM and 2 nM-4 nM concentrations of CP 55940, however the %B/Bo values were not significant different between the 0.2 nM and 2 nM concentrations. It is possible to demonstrate CB1 agonist activity by inhibiting forskolin induced cAMP levels in GH4C1 cells.

Future studies will include method optimization with a greater sample size, with the goal of increasing the significant difference between %B/Bo values amongst the concentrations of CP 55940 to develop a model for use with compounds with unknown CB1 receptor activity.

Acknowledgements

The author thanks Dr. Lauren Waugh for her patience and kind guidance, Dr. Richard Egleton for cellular supervision, troubleshooting solutions and interpretations, and Evan Thompson for his technical assistance.

References