CS 300: Programming Languages

Course Syllabus, Fall 2013

Contents

8

9

Course description

Course Catalog description

Instructor information and office hours
Prerequisites

Course topics

BSCS degree program goals

Course goals and relationship to BSCS program goals
Course timeline

Instructional materials

10 Writing assignments

11 Course assessment

12 Classroom etiquette

13 muOnline

14 Policy for students with disabilities

15 Bibliography

10



1 Course description

This course begins with an overview of programming languages syntax and
semantics, computational models (i.e., programming paradigms), and con-
cepts that span across languages. Focus is on concepts and fundamental
abstractions that characterize various computational models. In the pro-
ces, you will gain a beginning-level programming expertise in: Haskell, Lisp,
Python, C, and C++.

This is a writing-intensive course and carries writing-intensive designa-
tion. Therefore, substantial writing is involved in this course. Writing as-
signments comprise 60% of the course grade. Informal, low- and medium-
stakes, as well as high-stakes assignments are designed to effect learning
through writing. Students are exposed to concepts, principles, techniques of
programming languages through these writing assignments.

One or two informal, ungraded writing activity takes place in every class
meeting. Low-stakes writing takes place at least once a week, and so does
the medium-stakes writing. High-stakes writing is spread through the en-
tire semester and involves document revision based on instructor and peer
feedback.

2 Course Catalog description

Comparative study of the concepts found in contemporary programming
languages. Emphasis is on design and evaluation of a language in terms of
its features and their implementation. (PR: CS 210)

3 Instructor information and office hours

O Dr. V.N. Gudivada, Gullickson Hall Room 207, Phone: 304-696-5452.
Please use Blackboard email for all communication related to this course.

O Course meets on TuTh 11:00 AM - 12:15 PM in GH 206A.
O Office hours:

[d Monday: 12:00 Noon - 2.00 PM

[d Tuesday: 10:00 AM - 11:00 AM and 1:00 PM - 2:.00 PM

(d Thursday: 10:00 AM - 11:00 AM and 1.00 PM - 2.00 PM
[d Other times by appointment



4 Prerequisites

O CS 210 (Algorithm Analysis and Design)

5 Course topics

Computational models: imperative and declarative
Programming languages syntax and semantics
Names, scopes, and binding

Control flow and control abstractions

Data types and data abstractions

Subprograms, modules, exceptions, and polymorphism

O 0 0 0 0O 0 O

Haskell, Lisp, Python, C, and C++.

6 BSCS degree program goals

a. an ability to apply knowledge of computing and mathematics appropri-
ate to the discipline, including the ability to analyze and evaluate perfor-
mance tradeoffs of algorithms, data structures, and hardware solutions;

b. an ability to analyze a problem, and identify and define the computing
requirements appropriate to its solution;

c. an ability to design, implement, and evaluate a computer-based system,
process, component, or program, including software systems of varying
complexity, to meet desired needs;

d. an ability to function effectively on teams to accomplish a common goal;

e. an understanding of professional, ethical, legal, security, and social issues
and responsibilities;

f. an ability to communicate effectively, both written and oral, with a range
of audiences;

g. an ability to analyze the local and global impact of computing on individ-
uals, organizations, and society;



h. a recognition of the need for and an ability to engage in continuing pro-
fessional development;

i. an ability to use current techniques, skills, and tools necessary for com-
puting practice, including the ability of expressing algorithms in at least
two of the most important computer languages currently in use in academia
and industry.

7 Course goals and relationship to BSCS program goals
After successful completion of this course, students should be able to:

@® Enhance their writing skills and strategies by developing several doc-
uments and computer programs in the context of learning program-
ming languages concepts and principles (contributes to degree pro-
gram goal f).

@ Explain the fundamental principles that underlie all programming lan-
guages (contributes to degree program goal i).

® Demonstrate understanding of the basic structure of programming
languages including syntax, semantics, data and control abstractions,
pointers, subprograms, modules, concurrency, exceptions, and poly-
morphism (contributes to degree program goals c and i).

@ Explain the concepts and fundamental abstractions that underlie the
following languages and demonstrate programing expertise in them:
Haskell (pure functional), Lisp (semi-functional), Python (multiple paradigms),
C (imperative, procedural), and C++ (imperative, object-oriented).

® Understand, analyze, and document features of a programming lan-
guage through self-study (contributes to degree program goals f and h).

8 Course timeline

O Week 1

4 Computational models for programming (imperative and declar-
ative)

O Week 2 -3



€ Names, scopes, and bindings
O Week 4

4 Control flow
O Week 5

€ Data types
€ Midterm exam

O Week 6

4 Control abstractions
O Week 7

€ Data abstraction and object orientation
O Weeks 8-9

4 Haskell
O Week 10

€ Lisp
O Week 11

¢ Python
O Weeks 12 - 14

& C/C++
€ Final exam (12 December 2013, 10.15 AM - 12.15 PM)

9 Instructional materials

Required textbook:

[1] Michael L. Scott. Programming Language Pragmatics. Third. Morgan Kauf-
mann, 2009.

Lecture materials for other languages will be drawn from various re-
sources listed in the Bibliography (section 15). Lecture slides and handouts
will be made available on muOnline. You should also consult Web resources
listed in section 9.



Web resources

O TIOBE Programming Community Index. http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html

O Brian Heinold. An Introduction to Programming Using Python. Avail-
able for free download under Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License at http://faculty.msmary.edu/
heinold/Introduction_to_Programming_Using_Python_Heinold.
pdf

O Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell.
Available for free under the Creative Commons Attribution-NonCommercial
3.0 Unported License in PDF and HTML formats at http://book.realworldhaskell.
org/

O Learn You a Haskell for Great Good! is a great book for learning
Haskell. You can read it online at http://learnyouahaskell.com/

O Allen B. Downey, Think Python: How to Think Like a Computer Scientist,
OReilly Media, 2012. Available for free under the Creative Commons
Attribution-NonCommercial 3.0 Unported License in PDF and HTML
formats at http://www.greenteapress.com/thinkpython/

O Peter Seibel, Practical Common Lisp (free online textbook). http://www.gigamonkeys.com/book/

O M. Ben-Ari. Understanding Programming Languages (free online text-
book). http://www.freetechbooks.com/understanding-programming-Tanguages-t657.
html

O J.R. Fisher Prolog :- Tutorial

O William E. Shotts, The Linux Command Line. Available for fee down-
load in PDF format under a Creative Commons license at http://
sourceforge.net/projects/Tinuxcommand/files/TLCL/09.12/TLCL-09.
12 .pdf/downToad

O Learn Prolog Now — an introductory course to programming in Prolog
(free online book)

O Project Euler
O Logic in Action Open Course Project

O Real World Prolog usage


http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf
http://book.realworldhaskell.org/
http://book.realworldhaskell.org/
http://book.realworldhaskell.org/
http://book.realworldhaskell.org/
http://learnyouahaskell.com/
http://www.greenteapress.com/thinkpython/
http://www.greenteapress.com/thinkpython/
http://www.gigamonkeys.com/book/
http://www.freetechbooks.com/understanding-programming-languages-t657.html
http://www.freetechbooks.com/understanding-programming-languages-t657.html
http://www.freetechbooks.com/understanding-programming-languages-t657.html
http://www.freetechbooks.com/understanding-programming-languages-t657.html
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html
http://sourceforge.net/projects/linuxcommand/files/TLCL/09.12/TLCL-09.12.pdf/download
http://sourceforge.net/projects/linuxcommand/files/TLCL/09.12/TLCL-09.12.pdf/download
http://sourceforge.net/projects/linuxcommand/files/TLCL/09.12/TLCL-09.12.pdf/download
http://sourceforge.net/projects/linuxcommand/files/TLCL/09.12/TLCL-09.12.pdf/download
http://sourceforge.net/projects/linuxcommand/files/TLCL/09.12/TLCL-09.12.pdf/download
http://sourceforge.net/projects/linuxcommand/files/TLCL/09.12/TLCL-09.12.pdf/download
http://www.learnprolognow.org/
http://www.learnprolognow.org/
http://projecteuler.net/
http://www.logicinaction.org/
http://stackoverflow.com/questions/130097/real-world-prolog-usage

10 Writing assignments

Substantial technical writing is required in this course. In fact, we will be
writing on a regular basis. Writing assignments comprise 60% of the course
grade. We approach writing as an effective means to learn the subject mat-
ter, rather than as a practice to improve our writing abilities. However, it
is expected that our ability to write well will also improve as a byproduct
because of the frequency and the amount of writing involved.

Technical writing is precise, concise, and comprehensive. Typically sen-
tences are short and written in active voice. Long sentences are hard to read
and also prone to multiple interpretations. Brevity and accuracy are the hall-
marks of technical communication. Variation in sentences is good only when
it makes sense. Convoluted means to introduce sentence variation just for
the sake of it is considered a bad practice.

We will do two types of writing: informal and formal.

In every class we will do one or more explain to the village idiot type
informal, ungraded writing. Village idiot is a person known for ignorance
and lack of sophistication. We will write about technical concepts in plain
English in a way that even a village idiot can understand. We take turns in
sharing our writing with the class. Each informal writing activity is designed
to take no more than three to four minutes of class time.

We will do three types of formal writing. All written assignments need
to be turned in as PDF documents.

10.1 Low-stakes writing assignments

Low-stakes writing is administered in the form developing programming so-
Iutions using various languages. These assignments will take anywhere from
10 minutes to an hour. A small portion of the class time will be allocated
for this activity. Unfinished work must be completed outside the classroom.
Low-stakes assignments are not graded, but solutions will be discussed and
shared with students.

10.2 Medium-stakes writing assignments

There will be several graded, medium-stakes programming assignments. On
average, there will be one medium-stakes assignment in a two-week period.
These assignments are 3 to 5 pages in length. A medium-stakes assignment
typically requires several hours (in the range of 5 to 10) for completion.



They are completed outside the class period. We will write programs using
the following languages:

O Haskell
O Lisp

O Python
ONE

O C++

10.3 High-stakes writing assignments

This course requires two formal, high-stakes writing assignments:

O The primary goal of the first assignment is to assess a student’s ability
to explain basic concepts of the imperative programming paradigm.
The second goal is to assess a student’s ability to categorize program-
ming languages using various facets.

O The goals for the second assignment is to assess students’ ability to
understand, analyze, illustrate, and summarize a functional program-
ming language.

Details will be provided in separate handouts.

11 Course assessment

The course assessment components include: writing assignments (30%), pro-
gramming assignments (30%), one midterm exam (@20%), and final exam
(20%). Course grade is awarded based on the following scheme:

Score Letter Grade
>=90 A
>=80& < 90 B
>=70& < 80 C
>=60& < 70 D
< 60 F




12 Classroom etiquette

O Students are expected to show up for class on time and participate in
the class constructively.

O Attendance will be taken at the beginning of the class. However, at-
tendance has no bearing on students’ course grade. Students are not
penalized for not attending classes. However, they are responsible
for turning in assignments and projects on time and taking exams as
scheduled.

O During the class and exams, students should turn off all types of elec-
tronic gadgets including mobile/smart phones, iPhones, iPods, black-
berries, laptops. These devices must remain out of sight for the entire
duration of the class. Students who violate this policy will be asked to
leave the classroom.

O No internet browsing is allowed in the class.

13 muOnline

It is important that students visit muOnline regularly for up-to-date infor-
mation about the course. muOnline hosts all the course materials including
assignments, handouts, lecture notes, and reading materials.

14 Policy for students with disabilities

Marshall University is committed to equal opportunity in education for all
students, including those with physical, learning and psychological disabili-
ties. University policy states that it is the responsibility of students with dis-
abilities to contact the Office of Disabled Student Services (DSS) in Prichard
Hall 117, phone 304-696-2271, to provide documentation of their disability.
Following this, the DSS Coordinator will send a letter to each of the stu-
dent’s instructors outlining the academic accommodation he/she will need
to ensure equality in classroom experiences, outside assignment, testing and
grading. The instructor and student will meet to discuss how the accom-
modation(s) requested will be provided. For more information, please visit
http://www.marshall.edu/disabled or contact Disabled Student Services Of-
fice at Prichard Hall 117, phone 304-696-2271.


http://www.marshall.edu/disabled

15

(1]

(2]

(3]

[4]

[5]

6]

[7]

8]
(9]

(10]

(11]
(12]
(13]

(14]

[15]

Bibliography

Richard Reese. Understanding and Using C Pointers. http://it-ebooks.in
fo/book/2265/. O'Reilly, 2013.

TIOBE Software. TIOBE Programming Community Index. http://www. tiob
e.com/index.php/content/paperinfo/tpci/index.html. 2013.

Carlos A. Varela. Programming Distributed Computing Systems. The MIT Press,
2013.

Allen B. Downey. Think Python: How to Think Like a Computer Scientist.
O’Reilly Media, Inc., available for free under the Creative Commons Attribution-
NonCommercial 3.0 Unported License in PDF and HTML formats at http:
//www.greenteapress.com/thinkpython/, 2012.

David Griffiths and Dawn Griffiths. Head First C. http://it-ebooks.info/
book/704/. O’Reilly, 2012.

Brian Heinold. An Introduction to Programming Using Python. Creative Com-
mons Attribution-Noncommercial-Share Alike 3.0 Unported License, http:
// faculty . msmary . edu/heinold/ Introduction_to_Programming_
Using_Python_Heinold.pdf, 2012.

Mark J. Johnson. A Concise Introduction to Programming in Python. Chapman
& Hall/CRC, 2012.

Ben Klemens. 21st Century C: Tips from the New School. O'Reilly, 2012.

Huw Collingbourne. The Book of Ruby: A Hands-On Guide for the Adventur-
ous. No Starch Press, 2011.

Conrad Barski. Land of Lisp: Learn to Program in Lisp, One Game at a Time!
No Starch Press, 2010.

Vernon L. Ceder. The Quick Python Book. Manning Publications Co., 2010.
Mark Lutz. Programming Python. Fourth. O’Reilly Media, Inc., 2010.

Bruce A. Tate. Seven Languages in Seven Weeks: A Pragmatic Guide to Learn-
ing Programming Languages. The Pragmatic Bookshelf, 2010.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Me-
dia, 2009.

David A. Black. The Well-Grounded Rubyist. Manning Publications Co., 2009.

10


http://it-ebooks.info/book/2265/
http://it-ebooks.info/book/2265/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.greenteapress.com/thinkpython/
http://www.greenteapress.com/thinkpython/
http://www.greenteapress.com/thinkpython/
http://www.greenteapress.com/thinkpython/
http://it-ebooks.info/book/704/
http://it-ebooks.info/book/704/
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf
http://faculty.msmary.edu/heinold/Introduction_to_Programming_Using_Python_Heinold.pdf

[16]

(17]
(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

(31]
(32]

(33]

Jeri R. Hanley and Elliot B. Koffman. Problem Solving and Program Design in
C. Sixth. Addison Wesley, 2009.

Mark Lutz. Learning Python. Fourth. O’Reilly, 2009.

Michael L. Scott. Programming Language Pragmatics. Third. Morgan Kauf-
mann, 2009.

David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language.
O’Reilly Media, Inc., 2008.

Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages.
Third. The MIT Press, 2008.

Kent D. Lee. Programming Languages: An Active Learning Approach. Springer,
2008.

Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O’Reilly,
2008.

M. Ben-Ari. Understanding Programming Languages. http://www. freetech
books.com/understanding-programming-languages-t657.html, 2006.

David Ascher, Alex Martelli, and Anna Ravenscroft. Python Cookbook. Sec-
ond. O'Reilly, 2005.

Peter Prinz and Tony Crawford. C in a Nutshell. O'Reilly Media, Inc., 2005.
Peter Seibel. Practical Common Lisp. Apress, 2005.

Steve McConnell. Code Complete: A Practical Handbook of Software Construc-
tion. Microsoft Press, 2004.

Peter Van Roy and Seif Haridi. Concepts, Techniques, And Models Of Com-
puter Programming. The MIT Press, 2004.

Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison
Wesley, 1999.

Harold Abelson and Gerald Jay Sussman. Structure And Interpretation Of
Computer Programs. Second. The MIT Press, 1996.

K.N. King. C Programming: A Modern Approach. W.W. Norton, 1996.

Leon S. Sterling and Ehud Y. Shapiro. The Art of Prolog: Advanced Program-
ming Techniques. Second. The MIT Press, 1994.

Brian W. Kernighan and Dennis M. Ritchie. C Programming Language. Sec-
ond. Prentice Hall, 1988.

11


http://www.freetechbooks.com/understanding-programming-languages-t657.html
http://www.freetechbooks.com/understanding-programming-languages-t657.html

	Course description
	Course Catalog description
	Instructor information and office hours
	Prerequisites
	Course topics
	BSCS degree program goals
	Course goals and relationship to BSCS program goals
	Course timeline
	Instructional materials
	Writing assignments
	Course assessment
	Classroom etiquette
	muOnline
	Policy for students with disabilities
	Bibliography

