

Assessment and Communication of Seismic Hazard and Risk in the Central and Eastern United States: An Example from Kentucky

Zhenming Wang

Kentucky Geological Survey http://www.uky.edu/KGS/geologichazards/

6th Annual Technical Forum GEOHAZARDS IN TRANSPORTATION IN THE APPALACHIAN REGION

Outline

- Introduction Earthquakes in Kentucky
- Problems in Seismic Hazard and Risk Assessment
- Seismic Risk
- Seismic Hazard
- Problems with the National Seismic Hazard Maps (PSHA maps)
- Conclusions

Earthquakes in the United States of America

UK

New Madrid Seismic Zone

1) At least three large earthquakes occurred in 1811-1812 (M7.0-8.0)

2) Two ~M6.0 (1886 and 1895)

3) Paleo-liquefaction: there were similar large earthquakes occurred in the past several thousands Years (~500 years recurrence interval)

(Hough et al., 2000)

Modified Mercalli Intensity Scale

INTENSITY	EFFECTS	AVE. PEAK ACCELERATION
VI	Strong 0.06–0.07g	Felt by all. Damage slight.
VII	Very Strong 0.10–0.15g	Everybody runs outdoors. Considerable damage to poorly designed buildings.
VIII	Destructive 0.25–0.30g	Considerable damage to ordinary buildings.
IX	Ruinous 0.50–0.55g	Great damage to ordinary buildings
х	Disastrous >0.60g	Many buildings destroyed.
хі	Disastrous	Few, if any, structures remain standing (Simplified from Bolt, 1993)

- There is no question that there are seismic hazards and risk in the central US. But how high are the hazards and risk is a question because so little we know about them in the central US
- What can we do with the hazards and risk?
- The best ways are to mitigate those hazards and to reduce the risk, including better seismic design of buildings and other structures.
- Seismologist role: providing the best information on the hazards and risk in the central US.

Development of Seismic Design Standard in US

Design Ground Motion (0.2 s) in San Francisco and Paducah

- Mr. David Mast (a staff member from KY congressman Ed Whitfield office): Why 1) can I not build a regular two-story house in Paducah?
- SEAOK found that: impossible to construct residential structures in westernmost 2) Kentucky without enlisting a design professional (IRC-2000).
- DOE will not get permit from Ky-EPA to build a landfill at PGDP for clean-up. 3)
- One of the main reasons that Kentucky lost the centrifuge facility (\$2B) to Ohio. 4)

Question: does it make sense if

 You have to pay more for mitigating seismic hazards in Paducah than in San Francisco or Los Angeles?

• Answer: NO! (geology and seismology)

	Calif	òrnia	West Kentucky		
Probability	(Deterministic)		2 % ~ 5%		
			in 50 years		
Design	<=1.0g	<=0.7g PGA	>1.0g	>1.0 pG	A
(0.2 s)	(UBC-97)	(CALTRAN)	(IBC-2000)	(Bridge))
Geology	San Andreas fault		New Madrid faults		
	>20 r	nm/y	<2 mm/y		
	well d	efined	poorly defined		
Seismology	Hi	gh	Low		
	M7.0-8.0: ~100 y		M7.0-8.0: ~500 y		
	M6.0-7.0: ~20-50 y		M6.0-7.0: ?		
Performance	Very well			?	TH

Thu Apr 28 11:00:04 UTC 2005

640 earthquakes on these maps

- There is a gap (confusion) in understanding of seismic hazard and risk between the assessors and users:
 - –What is seismic hazard?
 - –What is seismic risk?
 - -How to assess and communicate them?

Hazard and Risk

- Hazard and risk are two fundamentally different concepts
- <u>Hazard</u> is a phenomenon that has potential to cause harm (objective)
 - natural hazards: earthquakes, hurricanes, tornadoes, floods, and others
 - man-made hazards: car crash, chemical spill, train derailments, terror attack, and others
- **Definition of Risk** is very broad and subjective, and depends on the stakeholders, but it contains three elements:
 - Probability (likelihood)
 - A level of hazard
 - Exposure (asset and time)

Hazard and Risk

- Hazard Measurement:
 - <u>Level of hazard (M8.0 earthquake, C-5</u> hurricane, car crash, 911 terror attach)
 - <u>Its recurrence interval</u> (500 years, 100 years, days [hours], ?)
- Risk Quantification:
 - Probability (likelihood) (1%, 5%, and 10%)
 - <u>A level of hazard (loss)</u> (M8.0, C-5, 911 event)
 - <u>Exposure (time and asset)</u> (10, 30, 50 years and a house, a city, a bridge)

- Seismic Hazard (objective)
 - <u>Natural phenomena</u> generated by the earthquake, such as surface rupture, ground motion, ground-motion amplification, liquefaction, and induced-landslide that have potential to cause harm
 - Measurement:
 - <u>level of hazard</u> (M6.0, MMI X [\$100M loss], 0.5g PGA, 10m displacement)
 - and its recurrence interval (20, 100, 50, 500 years)
- Seismic Risk (subjective)
 - Probability (likelihood) of experiencing <u>a level of seismic hazard</u> for a given <u>exposure (time and property)</u>
 - Examples:
 - 0.3g PGA with 10% PE in 50 years
 - MMI VIII with 5% PE in 50 years
 - \$100M loss with 2% PE in 50 years

• Seismic Risk Calculation

- Assumption on earthquake occurrence (subjective)
 - <u>Poisson model</u>: time-independent and independent of the history of previous event
 - <u>Renewal</u>: occurrence probability increases with time
 - <u>Others</u>

• Seismic Risk Calculation

If earthquake occurrence follows Poisson model, then the probability of *n* earthquakes of given size in an area or along a fault during a time interval of *t* years (time exposure) is

$$p(n,t,\tau) = \frac{e^{-t/\tau} (t/\tau)^n}{n!}$$

- The probability of no earthquake of given size is

$$p(0,t,\tau)=e^{-t/\tau}$$

 The probability of one or more (at least one) earthquakes is

$$p(n \ge 1, t, \tau) = 1 - p(0, t, \tau) = 1 - e^{-t/\tau} \approx 1 - (1 - 1/\tau)^{t}$$

• Seismic Risk Calculation

Examples

$$p = 1 - e^{-t/\tau} \approx 1 - (1 - 1/\tau)^t$$

- *p*=2%, 5%, and 10% PE in 50 years (*t*), then τ (recurrence time) will be about 475 (~500), 975 (~1000), 2475 (~2,500) years for the <u>Earthquakes (Events)</u>, respectively
- *t*=50 years and *τ*=100, 500, and 1,000 years, then *p* will be about 39%, 10%, 5% PE, respectively
- τ=500 years and t=50, 75, and 100 years, then p will be about 10%, 14%, 18% PE, respectively

• Other Engineering Risk

– Examples

$$p = 1 - e^{-t/\tau} \approx 1 - (1 - 1/\tau)^t$$

• Hydraulic Engineering (Flood)

-p=1% PE in 1 year (*t*), then τ (recurrence time) will be about 100 years (100-year flood)

• Wind Design

- p=2% PE in 1 year (t), then τ (recurrence time) will be about 50 years (wind design)

UK

Hazards and Risk Comparison

CUS has a higher seismic hazard?

California: ~100 years New Madrid: ~500 years

Seismic Hazard: CA: M7.8 /~100 years NM: M7.8/~500 years If loss: \$100B (same) Seismic Risk: CA: M7.8 with 39% PE in 50 years NM: M7.8 with 10% PE in 50 years

Appalachian Vs. San Andres which has higher seismic hazard?

Appalachian Vs. San Andres: which has higher seismic hazard? Key Element: TIME (million vs. hundred)

Appalachian Vs. San Andres: which has higher seismic hazard? Seismic risk?: much higher for San Andres

Problem #1: Is it a hazard or risk map? By definition: It is a risk map (1)Poisson model (2)General building Exposure (50 yrs)

160

120

80

30

20

But: It has been Called as hazard map

Annual Frequency of Exceedance

KGS

0.100 0.090

0.075 0.060

0.050

0.040 0.030 0.020

0.015

0.010 0.005

Problem #3:

10% PE in 50 years for earthquake (M7.5 or greater)

But there are 10, 5, 2,..., % PE in 50 years for ground motion for the Same earthquake

GUI Feb 15.05/21 Earthquake probabilities from USGS 2002 PSHA. 50 km maximum horizontal distance. Site of interest: triangle. Epicenters mb>5 black circles: rivers blue

UK

These problems result in difficulty in selecting a hazard level or risk for mitigation

(Memphis)

(Kentucky and ASSHTO)

Conclusions

- Seismic Risk \neq Seismic Hazard
 - Seismic Risk has three elements: probability, <u>hazard level (earthquake with certain magnitude</u> or ground motion generated by the earthquake), and <u>exposure (life of buildings or other</u> <u>structures), is broad and subjective</u>
 - Seismic Hazard is natural phenomena and has two elements: <u>earthquake with certain</u> <u>magnitude</u> or its effects (such as ground motions, generated by the earthquake) (how big) and <u>its recurrence interval (how often)</u>

Conclusions

- Seismic Hazard and Risk Comparisons between CA and CEUS show that

 CEUS has lower seismic risk than CA
 - It does not make sense that Paducah has higher design ground motion than San Francisco
 - The difficulty in formulating mitigation policies is, at least in part, resulted from the problems in
 - How seismic hazard and risk are being defined
 - How them are being communicated and understood

Conclusions

- Geologists and Seismologists have to
 - Characterize Seismic Hazard and Risk clearly
 - And also communicate Seismic Hazard and Risk clearly

Thank You!