"Drilled Shafts for Bridge Foundation Stability Improvement Ohio 833 Bridge over the Ohio River" An Update

Meigs County, Ohio Mason County, West Virginia

By Stan Harris, P.E. and Eric Kistner, P.E. FMSM Engineers

Geohazards in Transportation Appalachian Region Technical Forum August 1-2, 2007

Agenda

- I. Introduction/Background
 - A. General
 - B. Initial Slope Movement
 - C. Remediation Scheme
 - D. Instrumentation Plan
- II. Instrumentation Results/Recent Slope Movement
- III. New Instrumentation on Existing Bridge
- IV. Lessons Learned
- V. Question/Answer

I. Introduction/Background

Project Location

Project Team

 Owner: ODOT/WVDOH
 Designer: URS Corporation
 Contractor: Mahan/National Joint Venture
 Geotechnical Consultant – FMSM

Existing Structure

Proposed Structure

Fuller

May

Project Timeline

Fuller

May

Current State of Construction

Stability Issues/Slope Movement/Reaction

New Main Street Embankment Short-Term Stability Concerns Controlled Rate-of-Fill - Slope Inclinometers - Piezometers Initial Detection of Movement Additional Instrumentation

Original Extents of Slope Movement

POMERO 17, A-Axis

Probable Causes of Slope Movement

 Weak slickensided clay shale (mudstone)
 Possible ancient movement
 Construction activity/embankment
 Rapid drawdown cycles of Ohio River

Slope Geology/Geometry

Plan View of Stabilization Shafts

Revised Roadway Plan

Instrumentation Plan

- Site Slope Inclinometers, Piezometers
- Existing Bridge Tiltmeters, Survey Targets
- Touch Down Pier Strain Gauges, In-Place and Manually Read Inclinometer
- Stabilization Shafts Tiltmeters, Strain Gauges, In-Place and Manually Read Inclinometers

Stabilization Shaft Instrumentation Plan

II. Recent Slope Movement/ Instrumentation Results

Recent Movement (Oct '06 - Feb '07)

Detection

- Instrumentation Activity (late October)
 Tension Cracks (early December)
 Water Main Break (early December)
 Causes
 - Construction Activity
 River Fluctuation

Tension Cracks – 12/11/06

Construction Activity – 11/30/06

Ohio River Fluctuations

Tied Back Retaining Wall

Fulle

Scott 8 May

Results of Instrumentation

Site

- 4 Years of Data
- Numerous Inclinometers Sheared Due to Slope Movement
- Existing Bridge
 - 3 Years of Data
 - Abutment Tilt Due to Recent Movement
- New Bridge Touch Down Pier
 - 3 Years of Data
 - Top Deflection Due to Lateral Loading
- Stabilization Shafts
 - -2 Years of Data
 - Northernmost Shaft Being Loaded

Current Extents of Slope Movement

Limits of Movement

Existing Bridge Tiltmeter Results

Fuller

May

Existing Bridge Tiltmeter Results

Land Pier Top Tiltmeters

Fuller Mossbarger Scott & May

Stabilization Shaft Strain Gage Results

SS9: Moment Diagram

EN

GIN

E

ERS

With Linear Regression

Stabilization Shaft 9 – IPI Plot

Touch Down Pier Strain Gage Results

DS-54: Bending Moment History

EN

GIN

EERS

III. New Instrumentation on Existing Bridge

-Jointmeters (3 Joints on Ohio Side) -Tiltmeters on Linkage Assemblies -Strain Gages on Truss **Members**

IV. Lessons Learned

- Difficulty with Instrumentation Durability in Construction/River Environment
- Sole-Source Instrumentation Consultants
- Communication Between Contractor and Engineer Key
- Better Results from Tiltmeters/Strain Gages than IPI's
- Look for Agreement Between Instruments
- Human Intervention with Instruments Necessary At Times
- Installation and Access Can Be Difficult

V. Questions/Answers

