"Perceived Risk versus Cost in Karst Remediation – A Case History"

J. Samuel Vance, P.E.
Geotechnical Department Manager
AMEC Earth & Environmental, Inc.

7th Annual Technical Forum
Geohazards in Transportation in the Appalachian Region
August 1 and 2, 2007
Asheville, North Carolina
Project: Norfolk Southern mainline railroad, Milepost 96.1A; near Morristown, Tennessee.

Site Conditions: Curve built upon fill across closed depression; fill thickness up to about eight feet maximum; open fields adjacent to site; karst topography; some regional bedrock faulting; Knox and Mascot Limestone Formations.

Problems: Ground loss and subsidence near track; periodic slow orders for traffic (up to 30 trains per day); ongoing maintenance to add/regulate ballast, re-establish profile/SE; occasional repairs (boulder fill) to choke dropouts/rebuild shoulder.

AMEC Scope: To explore general subsurface conditions; develop remediation scenarios.
Talbot Quadrangle

About 3 miles to downtown Morristown

Highway 11E

About 30 miles to downtown Knoxville

Site

Geohazards in Transportation
In the Appalachian Region
Geohazards in Transportation
In the Appalachian Region
Drainage path

Geohazards in Transportation
In the Appalachian Region
Dropouts/Rock Fill near Track

Dec

Apr

Geohazards in Transportation
In the Appalachian Region
Geohazards in Transportation
In the Appalachian Region
Geohazards in Transportation
In the Appalachian Region
AMEC Geotechnical Study
• 20 borings (plus one)
• Review of GPR data obtained by NSC
• Review of subsurface data from earlier studies performed by others
Houston, we have a problem........
Corridor of highly weathered rock

+/- 250'

Geohazards in Transportation
In the Appalachian Region
No brainer: Address surface drainage

Remediation schemes to address subsidence:
- Compaction/cap grouting: $250K to $400K
- Track shift: $750K to $950K plus additional right-of-way issue
 - Temporary (during repair work to treat voids)
 - Permanent
- Land or at-grade bridge: $1.5M +/-

Perceived Risks:
- “What if world fell from beneath us?” (catastrophic collapse or dropout)
- Derailment/safety
- Environmental contamination from HAZMAT spill affecting air and/or water
- No convenient run-around if track out of service: freight $, schedules
- Unknowns/uncertainties with grouting/history of site
- PR issue associated with accident and perception of not having adequately addressed concerns if used lower cost/higher risk fix

Client’s Selection:
- Client chose expensive but permanent, walk-away fix – land bridge
Land bridge

- Off-the-shelf railroad design using concrete deck and socketed, concrete-filled pipe piles supporting bents and abutments
Note improved surface drainage and removal/sealing of dropouts.
Geohazards in Transportation
In the Appalachian Region
Geohazards in Transportation
In the Appalachian Region
Summary

• Risk-conscious client elected to minimize risk of future problems at specific high-risk site by utilizing expensive, low risk solution

• Risk of future problems within adjacent areas nonetheless