

Slope Stabilization with High Tensile Wire Mesh

Geohazards In Transportation In The Appalachian Region Conference

Asheville, North Carolina

Frank Amend, PE Geobrugg North America, LLC. Rocky Mount, North Carolina

Overview

- Introduction
- The TECCO® System
- Elements of the system
- Dimensioning concept
- Installation / Durability
- Sample Projects

Slope failure above foot wall

Slope failure above unsuccesfull barrier

Conventional solutions

Unsuccessful slope stabilization

Unsuccessful shotcrete facing

Unsuccessful, approx. 10 years old shotcrete facing, replaced by a green solution with wire mesh cover.

Unsuccessful Geogrid

Failure of soft Geogrid facing due to:

- Creeping effects
- Cutting of grid at sharp edges
- Overload

Replacement of old flexible solution

In case of high static stress:

Replacing the standard mesh or shotcrete by TECCO®

Advantages of TECCO®

- Combination of traditional rock/soil nailing with tensioned high performance wire mesh providing stability in the surface layer
- Active slope stabilization and rockfall prevention
- Alternative To Conventional Methods With Shotcrete, Geogrid, Retaining Structures
- Solving problems when standard mesh is inappropriate

The TECCO® System

Overview TECCO® Components

The Main Components:

- Rock or soil nail
- TECCO® mesh
- System spike plate

TECCO Components: Mesh

Characteristics of the TECCO® Mesh

- High-tensile steel wire (> 256 KSI)
- High tensile strength of the mesh
 (> 10.2 kips/ft)
- Safe force transmission mesh to nail
- Low weight
- Pretensioning of the system possible
- Simple handling
- Special corrosion protection

TECCO Components: Spike Plate

Characteristics of system spike plate

- Diamond shaped
- Specially developed for optimal load transfer
- Ridges for increased stiffness and easy rope connections
- Low weight
- Openings for vegatation

TECCO Components: Anchor

Characteristics of nails

- Standard steel bar anchors (e.g. GEWI, TITAN, Williams, etc.)
- Local products can be used
- Self drilling anchors for weak underground

What makes the TECCO® System unique?

- Special wire with extremely high tensile strength for large bearing loads and high resistance to tearing
- Dimensioning software program RUVOLUM® based on common geotechnical design principles and the performance of the TECCO® system

The TECCO® bearing resistance

Bearing Resistance Of The Tecco® Steel Wire Of Diameter 3.0 Mm To Tensile Stress:

 $Z_{\rm w} = 2,810 \; \rm lbs$

TECCO Dimensioning - Mesh Properties

- High-tensile steel wire mesh: tensile strength approx.
- Common steel wire mesh: tensile strength approx.
- Geogrid made of pet: tensile strength approx.

10.2 kips/ft

3 kips /ft

2.75 kips/ft

TECCO Performance Approval

 The performance data of the TECCO system has been checked and approved by the LGA

The Dimensioning Concept

The RUVOLUM Concept

The dimensioning concept comprises two investigations:

- 1. Investigation of superficial instabilities parallel to the slope
- 2. Investigation of local instabilities between single nails

Geotechnical Analysis

Investigation of superficial instabilities parallel to the slope

G = dead weight of sliding body

s = shear force

v = pretensioning force

 $c \cdot a = cohesion$

t, n = reaction forces

 α = inclination of the slope

 γ_{mod} = model uncertainty factor

$$\begin{split} \text{S [kN]} = & \ 1 \ / \ \gamma_{\text{mod}} \cdot \text{G} \cdot \sin \alpha - \text{V} \cdot \gamma_{\text{mod}} \cdot \cos \left(\Psi + \alpha \right) - \text{c} \cdot \text{A} - \\ & \quad [\text{G} \cdot \cos \alpha + \text{V} \cdot \sin \left(\Psi + \alpha \right)] \cdot \tan \phi \rbrace \end{split}$$

Geotechnical Analysis

Investigation of local instabilities between

the single nails

X = contact force

z = force parallel to slope

p = stabilizing force

g = dead weight of sliding body

 $c \cdot a = cohesion$

t, n = reaction forces

 α = inclination of the slope

 γ_{mod} = model uncertainty factor

$$P [kN] = \frac{G_{II} \cdot [\gamma_{mod} \cdot \sin \beta - \cos \beta \cdot \tan \phi] + (X-Z) \cdot [\gamma_{mod} \cdot \cos (\alpha - \beta) - \sin (\alpha - \beta) \cdot \tan \phi] - c \cdot A_{II}}{\gamma_{mod} \cdot \cos (\beta + \Psi) + \sin (\beta + \Psi) \cdot \tan \phi}$$

$$X [kN] = \frac{1}{\gamma_{mod} \cdot \{G_{I} \cdot (\gamma_{mod} \cdot \sin \alpha - \cos \alpha \cdot \tan \phi) - c \cdot A_{I}\}}$$

The RUVOLUM® Design Concept

of Cottbus, Germany

The RUVOLUM® Design Concept

The Dimensioning Concept

- Definition of slope condition
- Selection of nail type, nail angle
- → Determining max. possible nail pattern (distances a & b)

The Dimensioning Concept

Additionally to the investigations of superficial instabilities:

Proof of the terrain's resistance (deep sliding surfaces), using common methods to investigate the global stability (e.g. bishop)

TECCO System

Main Advantages

- Increased anchor grid, due to high performance mesh (less drilling works)
- Maintenance free after installation
- Low visability
- Insensitive to small creepings, movements
- Greenable by hydroseeding / greening mats
- Fully designable
- Quick and easy installation

Installation - Anchoring

- No major earth movements necessary: minor preparation of slope
- Determine location of anchor points, taking into account required grid and low points in the slope
- Drilling anchor holes in difficult slopes possible by new drilling technology and drilling equipment.
- Installation and grouting of anchors (nails)

Installation - Panel Layout

Installation - Panel Connections

Installation - Panel Connection

Installation - Pre-tensioning

Installation - Border Connection

Corrosion Protection

After corrosion testing

GEOBRUGG SUPERCOATING®

Homogenous surface

Al-Oxide layer

Zinc coated

Coarse surface with cavities

Partially totally degraded and / or already with rust formation

Applications - Slope Stabilization

Applications - Slope Stabilization (cont'd)

Applications - Temporary Shoring

Applications - Temporary Shoring

Applications - Streambed Scour?

Applications – Existing Stone or MSE Walls

Applications - Stabilizing River Banks

Palena River, Italy

Questions ???