“Getting Out of the Pits”
Investigating Ohio’s Coal Mine Hazards

Ohio Department of Natural Resources
Chris Gordon - Ohio Geological Survey
Tim Jackson - Mineral Resources Mgmt.
Ohio Geological Survey

- Houses almost 5,000 mine maps
- Manages underground mine data
- AUMIRA project; ODOT
- IMS Update

Abandoned Mine Locator website
Scanned Image of Abandoned Underground Detailed Mine Map

Scanning of Images Provided by The Office of Surface Mining (OSM)
Ohio Department of Transportation

- AUMIRA project
- Mile-marker GIS points
- Field application
- Overburden Application Tool
ABANDONED-UNDERGROUND MINE INVENTORY and RISK ASSESSMENT (AUMIRA)

ODOT requirements:

- Field maps for ODOT’s twelve districts depicting the location of AUM’s, mined-out areas, entry points, and mine point locations that underlie all state routes, federal routes, and interstate highways within a 500 foot buffer of AUM’s and mined-out areas.

- To indicate points of intersection and coordinates of such points where all roadways intersected buffer areas, mine polygons, and mine-out areas.

- To provide geo-referenced images of mine workings on maps.
GIS Analysis
Overburden Application

Interstate Highway

Bedrock Contour

Structural Contour

Digitized Line

Mine

Digital Elevation Model
Captured Data Output

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1150</td>
<td>1100</td>
<td>0.0</td>
<td>0.0</td>
<td>1150</td>
<td>N/A</td>
<td>N</td>
</tr>
<tr>
<td>1.0</td>
<td>1179</td>
<td>1200</td>
<td>0.0</td>
<td>0.0</td>
<td>1179</td>
<td>N/A</td>
<td>N</td>
</tr>
<tr>
<td>2.0</td>
<td>1212</td>
<td>1200</td>
<td>999.0</td>
<td>0.1</td>
<td>213</td>
<td>201</td>
<td>Y</td>
</tr>
<tr>
<td>3.0</td>
<td>1240</td>
<td>1200</td>
<td>999.0</td>
<td>0.2</td>
<td>241</td>
<td>201</td>
<td>Y</td>
</tr>
<tr>
<td>4.0</td>
<td>1278</td>
<td>1200</td>
<td>999.0</td>
<td>0.4</td>
<td>279</td>
<td>201</td>
<td>Y</td>
</tr>
<tr>
<td>5.0</td>
<td>1284</td>
<td>1200</td>
<td>999.0</td>
<td>0.4</td>
<td>285</td>
<td>201</td>
<td>Y</td>
</tr>
<tr>
<td>6.0</td>
<td>1267</td>
<td>1200</td>
<td>999.0</td>
<td>0.3</td>
<td>268</td>
<td>201</td>
<td>Y</td>
</tr>
<tr>
<td>7.0</td>
<td>1248</td>
<td>1200</td>
<td>999.0</td>
<td>0.2</td>
<td>249</td>
<td>201</td>
<td>Y</td>
</tr>
<tr>
<td>8.0</td>
<td>1204</td>
<td>1100</td>
<td>0.0</td>
<td>0.1</td>
<td>1204</td>
<td>N/A</td>
<td>N</td>
</tr>
<tr>
<td>9.0</td>
<td>1163</td>
<td>1100</td>
<td>0.0</td>
<td>0.1</td>
<td>1163</td>
<td>N/A</td>
<td>N</td>
</tr>
</tbody>
</table>
Overburden Application

Profile of Mine-Surface Relation

- Elevation (ft.)
- Surface Elev.
- Bedrock Elev.
- Mine Elev.

500 ft. Interval
IMS Update

- Improve interface
- Georeferenced mine images
- Orthophotography
- Coalbed-specific identification
Mineral Resources Management

- Abandoned Mine Lands program
- On-site Investigations
- Emergency Program

I-70 subsidence, 1995
Ohio’s Underground Mine Hazards

Case Studies
Ohio’s Underground Mine Hazards
Case Study #1
Tunnel Hill Road
Ohio’s Underground Mine Hazards

- Tunnel Hill Road
- Two lane county highway
- Connects New Lexington & Crooksville
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards

- Tunnel Hill Road
- Connects New Lexington & Crooksville

- Road patched at 3:00 p.m.
- Road collapsed at 5:00 p.m.
Ohio’s Underground Mine Hazards

Safety First
Ohio’s Underground Mine Hazards

- Tunnel Hill Road
- Connects New Lexington & Crooksville
- Road patched at 3:00
- Road collapsed at 5:00

- Road temporarily closed
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards

- Tunnel Hill Road
- Connects New Lexington & Crooksville
- Road patched at 3:00
- Road collapsed at 5:00
- Road temporarily closed

- Office research - mines in the vicinity
- And two past projects
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards

- Tunnel Hill Road
- Connects New Lexington & Crooksville
- Road patched at 3:00
- Road collapsed at 5:00
- Road temporarily closed
- Office research - mines in the vicinity
 - And two past projects

- Exploratory drilling needed
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards

Subsurface Profile

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Description</th>
<th>Sample Depth</th>
<th>Blown Per Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>Asphalt tire bed</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3-5</td>
<td>Brown silty clay at the bottom</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5-7</td>
<td>Brown clay down to 9% brown and gray mud</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>7-9</td>
<td>Silt clay with some carbonated in brown to gray</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>9-11</td>
<td>Gray silt shale</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>Depth</th>
<th>Blown Per Inches</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>

ODNR Mineral Resources Management

Address: 130 South State Street, Columbus, OH 43215
Phone: 614-644-6563
Ohio’s Underground Mine Hazards

• CONSTRUCTION:
 • Stabilizing about a length of 60 feet
 • 10 borings drilling to a depth of 31 feet
 • Placed in the field (~ 15 feet alternating)
 • Casing to keep holes from collapsing
 • Inject grout 200 CYD (500 psi 10 inch slump)
 • Engineers estimate $26, 220.00
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards

• CONSTRUCTION:
 • Some borings collapsing before casing
 • No large open mine voids
 • Mine void filled with water & gob
 • Grout takes not as high as estimated
 • Project cost $14,067.75
Ohio’s Underground Mine Hazards

- Time Frame
 - 4-3-2003 @ 5:00 p.m. Subsidence occurred
 - 4-4-2003 - Complaint received
 - 4-4-2003 - Field visit
 - 4-7-2003 to 4-8-2003 - Exploratory Drilling
 - 4-11-2003 - Design completed
 - 4-16-2003 - Construction start
 - 4-18-2003 - Construction Completed
Ohio’s Underground Mine Hazards

Case Study #2
Halsey Subsidence
Ohio’s Underground Mine Hazards

- Subsidence in a field - big deal !?!?
- Another, another, another -
- Hey - What’s this by the road?
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards

- Subsidence in a field - big deal !?!
- Another, another, another -
- Hey - What’s this by the road?

- **Office Research**
 - No MAPPED mines in vicinity
 - Lots of projects
Ohio’s Underground Mine Hazards

- Subsidence in a field - big deal !?!?
- Another , another, another -
- Hey - What’s this by the road
- Office Research

No drilling needed
Yea - We can reach it with a track hoe
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards
• Not on road but in close proximity

• Small diameter - It doesn’t look like much

• Must know the area & history
Ohio’s Underground Mine Hazards
Ohio’s Underground Mine Hazards

Construction:
Excavate & Backfill
Ohio’s Underground Mine Hazards

- **Construction**
 - Stabilize **TWO** subsidences
 - Excavation - 6 ft X 6 ft on the mine floor
 - Lined with filter fabric
 - Place type “C” stone
 - Mix in #57 stone
 - Cover with filter fabric
 - Site restore
 - Engineers estimate - $7,291.00
Ohio’s Underground Mine Hazards

• Engineers Estimate

• Stabilizing TWO subsidences
• Excavation - 340 CYD
• Filter Fabric - 400 SYD
• Type “C” stone - 22 Tons
• Type #57 stone - 22 Stone
• Engineers estimate - $7,291.00
Ohio’s Underground Mine Hazards