100-year flood?
No. It’s a 5-year flood.

And what is this?

Photograph by
G.R. Crosby, USGS, 2003

2003/02/22
10-year flood last week?

Where do all these terms, "T-year flood", come from?
“Recurrence intervals” or “return periods” are always estimates.

Flood frequency analyses are used to predict “design floods” for sites along a stream, using observed annual peak flow discharge data.

http://nwis.waterdata.usgs.gov/wv/nwis/peak
How is a 100-year “design flood” estimated from this data?

500-year??

10,000-year????????????????????????????
Flood Frequency Analysis

G is the fit parameter of the Log-Pearson III distribution

$G > 0$

Log-normal or log-Pearson type III with $G = 0$

$G < 0$

EXTRAPOLATION BEGINS:
In the United States, the Log-Pearson Type III Distribution is widely used to calculate flood recurrences by fitting this distribution to annual series of observed peak flows.

None of these curves is a curve-fit of the data.
\[X = \frac{\sum X_i}{N} \]

\[S = \sqrt{\frac{\sum (X_i - X)^2}{(N - 1)}} \]

\[G = \frac{N \sum (X_i - X)^3}{(N - 1)(N - 2) S^3} \]

Guidelines for Determining Flood Flow Frequency, Bulletin 17B
Generalized skew coefficients of annual maximum streamflow

Source: Guidelines for determining flood flow frequency, Bulletin 17B, Hydrology Subcommittee, Interagency Advisory Committee on Water Data, March 1982
U.S. Water Resources Council has recommended the use of the log-Pearson type III distribution with a generalized skew coefficient.

Generalized skews are used to average with an individual station skew to stabilize flood-frequency estimations.
The skew coefficient is the fit parameter of the Log-Pearson Type III Distribution.

$G_W = 0.931$

54 years of gage data

Individual peak from gage data

Note - Preliminary computation. User is responsible for assessment and interpretation.
Why are flood frequency estimates important?

- Major design decisions
- A large number of smaller design decisions
- Floods place the lives of all West Virginians at risk, influencing public, business, and personal decisions.

Stable, consistent estimates optimize investment in infrastructure
Seeking a new generalization--

\[G = \frac{N \sum (X_i - X)^3}{(N - 1)(N - 2) S^3} \]

John T. Atkins Jr., Jeffrey B. Wiley, and Katherine S. Paybins

To improve flood frequency estimates
Station skew plotted at basin centroid
DATASET: West Virginia peak stage stations with at least 25 years of record and 59 nearby stations for a total of 147 sites

ARE SHORT-HALF AND LONG-HALF FROM SAME POPULATION?: means of 75 sites with >= 50 years of record and 72 sites >= 25 and <50 years of record differ by 0.1834

TEST: A Wilcoxon Two-Sample Test of stations skews of these as samples.

RESULT: Reject HO at alpha = 0.05

For best reliability, station skews for the group of 75 sites with 50 or more years of record were used to develop procedures

To avoid bias the original selection criteria is retained: The full 147-site mean square error was used for comparing all procedures.
147 sites with at least 25 years of record, darker symbol for sites with 50 or more years of record
<table>
<thead>
<tr>
<th>Method</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nationwide skew map</td>
<td>0.302</td>
</tr>
<tr>
<td>Best regional means</td>
<td>0.255</td>
</tr>
<tr>
<td>Best 1 variable equation</td>
<td>0.233</td>
</tr>
<tr>
<td>Best 2 variable equation</td>
<td>0.222</td>
</tr>
<tr>
<td>Contouring-- WV skew map</td>
<td>0.217</td>
</tr>
</tbody>
</table>
QUESTIONS:

John T. Atkins
U.S. Geological Survey
West Virginia WSC
11 Dunbar St
304-247-5130 ext 286
jtatkins@usgs.gov

U.S. Geological Survey
West Virginia WSC
11 Dunbar St
304-247-5130 ext 286
jtatkins@usgs.gov

Photograph by
Terence Messinger, USGS, 2005