Optical and Acoustic Televiewer Borehole Logging – Improved Oriented Core Logging Techniques

Tom Eliassen, VTrans; Dorothy Richter, Hager-Richter Geoscience; Heather Crow, Peter Ingraham & Trevor Carter, Golder Associates

MYTHBUSTERS

Highly fractured zones and soil filled joints – four episodes of folding and faulting

Folded rock fabric within cut

THE PROBLEM:

Maintaining core orientation difficult in highly fractured rock – soil seams up to 4" to 6" thick, significant core loss

Local drillers not accustomed to double-or triple-tube coring methods

15-foot rockfall boulder in Route 9 ditch

LIMITED BEDROCK EXPOSURES:

PROJECT APPROACH:

- Collect joint and discontinuity data with a coordinated field mapping and coring program
- Geophysical borehole logging using optical or acoustic methods
- Measurement and assessment of joint planes and laboratory testing of core samples.

OPTICAL AND ACOUSTIC LOGGING:

- Early logging developed in the 1960's in the oil patch – recent advances in data processing and field equipment have yielded highly mobile and practical applications.
- Good core drilling and sampling is still vital – for verification, lab samples and to assess joint planes

BOREHOLE TELEVIEWERS:

- Can replace Oriented Coring with an oriented image of the borehole wall
- Enhance geotechnical data with high-resolution *in situ* images
- Can be a cost effective investigation technique

The Logging System

Small, Portable

Laptop controlled data collection -QC on site

Operates independently of the drill rig

Televiewers: Optical and Acoustic

Depth		Optical Televiewer					Acoustic Televiewer				
1m:10m	0°	90°	180°	270°	0°	0°	90°	180°	270°	0°	
16.8						in the second	No. of Contraction of	T	X	W / T	
17.0							X	X		A N	
17.2						T	A			家山	
17.4				A LANGE	AL SAL					A CONTRACTOR	
17.6	A. C. A.					The Area			-	in the	

Optical:

High-resolution digital image of borehole wall

Acoustic:

Sonar image of borehole wall

TELEVIEWER INTERPRETATION

Optical Images in Fault Zones: Collecting Data in Poor Rock

INTEGRATION WITH GEOTECHNICAL DATA

Geotechnical Data and Televiewer Images: One Log Sheet

All Terrain Vehicle w/ Gen-Set & Tools

Winch, Data Processor and Laptop

Caliper Tool

Optical Televiewer Tool

Acoustic Televiewer Tool

I-93 Improvements, New Hampshire:

I-93 Improvements, New Hampshire:

I-93 Improvements, New Hampshire

Televiewer Logging in New York City:

Getting there is half the battle....

Freedom Tower, World Trade Center Site:

Televiewer Logging – New York City:

NYC Televiewer Log

Diavik Diamond Mine

•Geotechnical drilling for pit slope stability investigation

•Televiewers introduced – oriented coring phased out

Diavik Diamond Mine

Advantages:

Structural data where it's most needed

Diavik Diamond Mine

Primary Benefits:

- **Costs reduced** fewer staff, fewer hours on site, faster, more accurate core logging
- Improved results greater confidence in structural orientations, *in situ* images, comprehensive log sheets

Tuen Mun Road - Hong Kong

- Acoustic and impression packer core orientation – foam coring
- Six major sheet joints in micro fractured granite
- 9000 vehicles/hr Six Lanes

WellCad Televiewer Tools:

 Virtual cores can be developed from televiewer images and viewed from all angles

5.0

10.0

20.0

Virtual Optical Core - VT

Virtual Acoustic Core - NYC

30-

35.

50

55

Example "Virtual Core" plots from OPTICAL Televiewer

Televiewer Project Considerations:

OPTICAL TELEVIEWER

- Borehole diameter 3 12 inches
- Clean borehole clear fluid or air filled
- Logging has produced excellent results in diamond drill and good results in air rotary boreholes

ACCOUSTIC TELEVIEWER

- borehole diameter 3 12 inches
- Fluid need not be clear but must be present in borehole
- Logging has produced excellent results in diamond drill and good - fair results in air rotary boreholes

Borehole Televiewers: What can be gained?

- Accurate structural orientations of features in vertical and inclined boreholes
- Image of rock conditions in situ leading to improved geotechnical information
- Significant cost savings when compared to traditional oriented core methods

Challenges Ahead

 Merge the Geotechnical and Televiewer Information; and
Automate Stereronet Production and Joint Set Data Synthesis.

Questions?

The best part about trees in Vermont