Using LiDAR to map sinkholes in Jefferson County, West Virginia

John Young, Biology Division*
U.S. Geological Survey
Leetown Science Center
Kearneysville, WV

*Presented by Craig Neidig, USGS WV Geospatial Liaison

August 6, 2008

“Geohazards in Transportation in the Appalachian Region”
Project Objectives

* In support of USGS study of water availability and threats to water supply of Leetown Science Center (Kozar et al.)

1. Acquire LiDAR data to allow for modeling of fine scale surface features
2. Generate fine-scale digital elevation models from LiDAR data
3. Use topographic analysis, aerial photography, and statistical analysis to map sink holes and potential groundwater recharge zones from fine-scale surface models
What is LiDAR?

• LiDAR = \underline{Light \ Detection \ And \ Ranging} (aka “airborne laser scanning”)

• Laser pulses sent from aircraft in dense scanning pattern (0.5-2 meters apart)

• Return of laser pulse recorded at aircraft

• Time to return, speed of light, and altitude of plane used to compute \underline{surface height} (z) of each pulse with high accuracy

• Ground position of each laser pulse computed using differential GPS (x,y)
What is LiDAR?
Lidar System Components

- Lidar Transmitter, Scanner, and Receiver
- Aircraft Positioning – Differential GPS (with post-processing)
- Aircraft Attitude – Pitch, Roll, Yaw – Inertial Navigation System (GPS-Aided)
“Multi-Stop” lidars measure the distances to multiple targets (n ≤ 5) encountered by the laser pulse.
x,y,z First Surface Returns
Output data types

- Canopy-top (first return) elevations
- Bare-Earth elevations
- Building models
- Vegetation metrics (multiple return or waveform-resolving systems)
- Intensity returns
Vegetation Effects on Terrain Model

Point Cloud Elevation Stretch

Bare Earth Points used to create surface

Images courtesy Hans Erik Anderson
LiDAR returns overlaid on aerial photograph of Leetown Science Center

LiDAR returns: **First** (top of canopy, roofs), **Last** (ground surface)
Data Acquisition

• Acquired LiDAR data by partnering with USDA-NRCS
 - Conducted accuracy assessment of LiDAR data acquisition in exchange for access to data

• LiDAR data delivered as first return, last return, and “bare earth” (vegetation and buildings removed)
 - Bare earth processed data still had substantial artifacts from vegetation
 - Needed method to remove remaining vegetation signal to examine landform under forest canopy
USGS QA/QC Campaign:
1. 38 stations established throughout county in variety of land surface types
2. Survey-grade GPS used to collect surface height data
3. GPS surface heights compared to mean LiDAR return height within 2 meters of GPS points
4. All but 1 checkpoint were within ± 0.15 meter or less z-value (project spec)
Problem: Find method to locate surface sinks, even under forest canopy
Data: LiDAR, acquired Spring 2005, delivered Fall 2005

Raw (last return) data gridded to 2m surface
Progressive Curvature Filtering

- Evans and Hudak (2007) proposed a method for processing LiDAR data to find ground surface in forests of the interior western U.S.
- Method uses an adaptive, iterative filter that considers scale of variation
 - Fits “thin-plate splines with tension” at multiple scales to examine local curvature and determine which points to filter out
- Effective at removing vegetation
Data processing: Progressive Curvature Filter (Evans and Hudak, 2007)

PCF filtered data gridded to 2m surface
Data processing: Landform analysis

Landform shape in 10 m window, red = concave, blue = convex
Data processing: Landform assessment

Find compact bowl features, possible sinkholes
Sinkhole confirmed!
Another view of the sinkhole...
Field validation results
94 sites mapped, 55 visited on ground

Sink (throat) found: 16.4%
Probable sink (no throat): 43.6%
Depression: 25.5%
Not a sink: 14.5%
Other LiDAR applications

- Surface geology (bedding, etc.)
- Sinkhole susceptibility by geologic formation
- Structure / Fault line tracing
- Hydrologic flow anomalies
- Vegetation height/structure
- Landslides / slumping
- Landscape visualization / 3D modeling
Leetown LiDAR DEM

• The LiDAR DEM was used as the upper layer of the hydrologic flow model.

• LiDAR imagery aided in identifying anomalous areas within the model and helped resolve issues with elevated heads in certain areas.
For additional info, contact John Young (jyoung@usgs.gov)
Acknowledgements

- John Jones, USGS Geography division, Reston, VA (collaborator)
- Bob Glover, USGS Geography division, Reston, VA (GPS survey)
- Jeffrey Evans, USFS, Moscow, Idaho (filtering algorithms)
- Kenny Legleiter, (formerly of) USDA-NRCS, Ft. Worth, TX (LiDAR flight contracting)
- Amanda Moore, USDA-NRCS, Morgantown, WV (LiDAR data QA)
- Mark Kozar, USGS-WSC, Charleston, WV (Hydrologic modeling)
- Study funded by USGS-LSC
For further information:

John Young
Biogeographer
U.S. Geological Survey
Leetown Science Center
Kearneysville, WV 25430
ph: 304-724-4469
email: jyoung@usgs.gov