Minersville, Ohio
Riverbank Stabilization
A Case History

Lisa Gatens, E.I.
Seth Lyle, P.E.
U.S. Army Corps of Engineers
Huntington District
Geotechnical Branch
Huntington, West Virginia

One Team—Relevant, Ready, Responsive, Reliable
Presentation Outline

1. Background
2. Challenges
3. Investigations
4. Remedial Measures
5. Summary
6. Recommendations
7. Questions
Section 14 of the 1946 Flood Control Act (Public Law 79-526)

- Authority for USACE to plan and construct flood damage related emergency streambank and shoreline protection projects.
- Critically essential public facilities (highways, sewer lines, schools, etc.)
- Federal costs limited to $1.5M for each project.
- Projects accepted after an investigation of relocation alternatives, engineering feasibility, environmental acceptability, and economic justification.
WHO?

♦ USACE (federal government)
♦ ODOT (non-federal sponsor)
 - First $100K of study funds are 100% federally funded.
 - Remainder is 65% federally funded and 35% sponsor funded, not to exceed $1.5M.
Serving the Armed Forces and the Nation

WHERE?

- Upper right descending bank of Ohio River (River Mile 248.5)
- Upstream of Pomeroy, OH.
- 2400 LF reach along State Route 124 (Mile 23).

US Army Corps of Engineers
WHY?

Constructed to address retaining wall collapse, top-of-bank retreat, and related roadway failures.
Construction commenced in September 2003 and was completed in October 2004.
Project Specifics

- Total Cost: $2.5 M
- Length: 2400 ft.
- Bank Height: 30 ft.
- Total Stone: 80,000 tons
- Stone Grad.: 24” top size
- Excavation: 20,000 CY
- SSP thickness: 6 to 20 ft.
- SSP riverward slope: 1.5H:1V
- Toe key: Avg. 5 – 15 ft. wide
- Base Width: 20 – 30 ft.
Ohio River Railway

Railway car system extended 12 miles along the Ohio River. Built in 1900.

Failed stone wall & exposed RR ties

Photo from downtown Pomeroy, Ohio
More than 40,000 acres of abandoned underground coal mines located up dip of project. 14 separate mines. Some sealed during the WPA days.
Abandoned Coal Mines & Related Drainage

- Relic drainage features noted landward of project reach.

- Collapsed vault structure noted on landward side of SR 124 in displaced reach.

- Cross drains through roadway were not functional.
Construction Challenges

- Seven Ohio River flood events inundated the roadway during construction.
- Barges got loose from tow and ran up on roadway damaging shoulder.

One Team—Relevant, Ready, Responsive, Reliable
Displaced Reach

Serving the Armed Forces and the Nation

One Team—Relevant, Ready, Responsive, Reliable
Investigations

♦ Post construction surveys

- As-Built (April 2004)
- 10 June 2004
- 15 June 2004
- 16 July 2004
- 3 Jan. 2005
- 8 Aug. 2006

♦ ODOT borings (Nov. 04)

♦ USACE borings (July 06)

♦ Bathymetric surveys (2002 and July 2006)
 (Note: 2002 bathymetric survey data limited; sections taken every 500' along river; only one x-section within study reach at approx. Sta. 15+60)

♦ Review of Historic Mapping

One Team—Relevant, Ready, Responsive, Reliable
Typical Section

CINDERS / SLAG

SOFT to MED. CLAY

STIFF CLAY (COLLUVIUM)

MED to DENSE

SILTY SAND W/ GRAVEL

INDURATED CLAY

SANDSTONE

ELEVATION

580
570
560
550
540
530
520
510
500

0+00 0+10 0+20 0+30 0+40 0+50 0+60 0+70 0+80 0+90 1+00 1+10 1+20

STATION 14+75
Serving the Armed Forces and the Nation

Section including July 2006 Bathymetric Survey

- Survey sections at 25 to 50 ft. increments from station 12+50 to 17+00.
- Bathymetric survey performed at same sections as bank sections and at upstream and downstream limits of project, as well as parallel to bank for length of project.

One Team—Relevant, Ready, Responsive, Reliable
1911-1914 Ohio River Survey

PROJECT LOCATION

L&D No. 25 Pool = 528.5' m.s.l.

R.C. Byrd L&D Pool = 538.0' m.s.l
(1937 to present)
Serving the Armed Forces and the Nation

Bathymetric Surfaces Sta. 15+70

- 2002 survey sections performed in 500 ft. increments along entire reach of RCB L&D pool.
- Survey sections within project reach are located at approximately Sta. 4+50, 10+00, 15+70, and 21+50.

One Team—Relevant, Ready, Responsive, Reliable
In the nineteen twenties, Grant Hood built a large coal tipple in the west end of town (Minersville). . . . Later the tipple was moved down river a short distance beside the Pomeroy Water Works.

Reference: Meigs County Historical Society Meigs County History Volume I Pg. 18, Minersville History
Relic Coal Transfer Points

Relic transfer points (displaced SSP located between these points)
Treatment Alternatives

♦ **Excavation and Reconstruction**: did not adequately address probable failure mechanism; costly temporary shoring and sheeting required during excavation due to risk of failure of roadway.

♦ **Drilled Shaft Wall**: uncertainties related to soil arching effect of slag/cinders/refuse between shafts; estimated cost greater than sheet pile wall.

♦ **Post and Panel Wall**: prohibitively expensive due to excavation and backfill costs (double handling of stone); would require temporary shoring measures during excavation.

♦ **Sheet Pile Wall**: Cost effective alternative; some risk involved with potential subsurface obstructions (boulders, relic stone wall) and vibration related concerns.

SELECTED ALTERNATIVE

Sheet Pile Wall w/King Piles: Cost effective; Reduces risk related to inability of driving sheet piling due to subsurface obstructions.

Pipe Pile with Extruded Connectors

The properties are only limited to jobsite and manufacturing restrictions.

Detail taken from: www.lbfoater.com/
Sheet Pile Wall
Typical Section

PROPOSED SHEET PILE WALL (PZ 18) (APPROXIMATE LOCATION)

GUARDRAIL (APPROXIMATE LOCATION)

PROPOSED EXCAV & CUT R/A TILES

AS BUILT STONE-APRIL, 2004

MONITOR STONE JANUARY 9, 2022

MONITOR STONE-AUGUST 8, 2006

CINDERS / SLAG

ELEVATION

580

570

560

550

540

530

520

510

500

0+00 0+10 0+20 0+30 0+40 0+50 0+60 0+70 0+80 0+90 1+00 1+10 1+20

STATION 14+75

SANDSTONE

INDURATED CLAY

INDURATED CLAY

Silty Sand W/Gravel

MED to DENSE

SOFT to MED. CLAY

STIFF CLAY (COLUVIUM)

NORMAL Pool = 538.0'

RELIC FAILED SANDSTONE BLOCK WALL (APPROXIMATE LOCATION)

MONITOR STONE-AUGUST 8, 2006

ORIGINAL GROUNDsetBackground:rgb(255,255,255)

Sheet Pile Wall
Typical Section

PROPOSED SHEET PILE WALL (PZ 18) (APPROXIMATE LOCATION)

GUARDRAIL (APPROXIMATE LOCATION)

PROPOSED EXCAV & CUT R/A TILES

AS BUILT STONE-APRIL, 2004

MONITOR STONE JANUARY 9, 2022

MONITOR STONE-AUGUST 8, 2006

CINDERS / SLAG

ELEVATION

580

570

560

550

540

530

520

510

500

0+00 0+10 0+20 0+30 0+40 0+50 0+60 0+70 0+80 0+90 1+00 1+10 1+20

STATION 14+75

SANDSTONE

INDURATED CLAY

Silty Sand W/Gravel

MED to DENSE

SOFT to MED. CLAY

STIFF CLAY (COLUVIUM)

NORMAL Pool = 538.0'

RELIC FAILED SANDSTONE BLOCK WALL (APPROXIMATE LOCATION)

MONITOR STONE-AUGUST 8, 2006

ORIGINAL GROUNDsetBackground:rgb(255,255,255)
3 vibratory hammers used during driving (2 failed during driving)

Initially unable to drive 7 sheets to required depth; encountered large boulders (sandstone blocks); Able to re-drive sheets with larger hammer

Drove sheet thru areas of N=50+ blow counts to top of sandstone bedrock.
Vibration Monitoring

♦ Vibration related concerns stemming from prior litigation following original Sec. 14 project construction.

♦ Pre and post inspection surveys completed on all adjacent properties by private contractor specialist.

♦ Glass rods installed on foundation blocks.

♦ Ground vibration monitoring throughout construction via seismic instruments.

♦ Ground vibrations never exceeded 10% of allowable horizontal accelerations.

♦ No structural changes from ground vibrations as the results of the project. No complaints from residents.
Drainage Interception and Control

♦ >40,000 acres of abandoned coal mines up dip of SR 124.

♦ Mine discharge, storm event runoff, and Ohio R. inundation cannot be fully addressed by sizing collection structures and cross drains.

♦ Collapse of an adjacent collection vault (20 x 6 x 4 ft.) and blockage of cross drains was the most significant cause of displacement of SSP.

♦ ODOT completed repairs of the vault cover.

♦ USACE Contractor reconstructed drop inlets and cross drains.
Project Summary

- 2400 LF of bank stabilization complete for $2.5 million; ~80,000 tons of stone, 30 ft. high bank
- 280 LF reach of project failed prior to final inspection and was subsequently repaired by installation of a sheet pile wall and reconstruction of drainage interception and control features; work funded entirely by ODOT ($1.2 million)
- Complete project is functioning as designed. Numerous storm and high water events have occurred since completion.
General Recommendations

♦ Perform comprehensive evaluation of site condition including relic structures and history of land use and failures.

♦ Subsurface explorations are necessary to properly characterize the site.

♦ Establish foundation requirements; Key-in SSP treatment & place on suitable filter and/or in-place soils.

♦ Review hydrometerological data and perform construction during historical low water/rainfall periods.

Conclusions

♦ Riverbank projects are complex. There are inherent risks building along rivers.

♦ Retain a team of experienced professionals for design and construction.

♦ Use an experienced contractor with supervisory and inspection staff.
Questions??

Credits

♦ Ohio Department of Transportation (ODOT) District 10

♦ Madison Coal & Supply (Construction Contractor)

♦ Michael F. Spoor (USACE Lead Engineer)

♦ USACE Construction Division

One Team—Relevant, Ready, Responsive, Reliable