August 11, 2008
8th Annual Technical Forum
Geohazards in Transportation in the Appalachian Region

Risk Management in Geotechnical Decision Making

Benjamin S. Rivers, PE
Geotechnical Engineer
Federal Highway Administration
Competing Demands...
Asset Management Perspective

- National Highway System Practically Complete
- Maintain, Improve, Manage
 - System Management and Monitoring
 - Construction and System Preservation
 - Evaluation and Economic Investment

- Managing Decisions…
Risk Management …a decision making tool.

Systematic Process Involving…

• Identification
• Analysis
• Planning
• Management
Risk

- Future Phenomenon
- May or May Not Occur
- Direct Impact to Project/Program
- Benefit or Detriment
Risk Management – Why?

• Limit Surprises
• Minimize Management by Crisis
• Operate Proactively instead of Reactively
• Reduce Long-term Costs and/or Variances
• Increase Likelihood of Success
• “Do It Right” the First Time
• Prevent or Minimize Bad Things from Happening
• Gain Competitive Advantage

Minimize Threats Maximize Opportunities
Construction Claims

• Changed Conditions
 • Legitimate
 ➢ Inadequate site characterization
 ➢ Bust in process...
 • Fraudulent
 ➢ Loopholes in contracting method(s)
 ➢ Problems/Conflicts within specifications, special provisions, documentation...
Failures...due to...

- Geohazards
 - Complex Geologic Conditions
 - Man-Made Conditions
- Inadequate Design
- Inadequate Characterization
- Inadequate Construction
- Inadequate QA...
Inherent to Geotechnical Engineering…

- Geological and subsurface conditions are quite variable and dynamic
- Subsurface conditions are typically not readily apparent
- Generalize conditions on limited physical data
BORING LOG No. TS 1

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>% BLOWS</th>
<th>% REC.</th>
<th>COLOR, MOISTURE, CONSISTENCY</th>
<th>GEOLOGIC DESCRIPTION & OTHER REMARKS</th>
<th>USCS CLASS</th>
<th>% MC</th>
<th>DRY DENS.</th>
<th>perf.</th>
<th>GRIT</th>
<th>DPH</th>
<th>DEP. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-9</td>
<td>10</td>
<td>60</td>
<td>SP</td>
<td></td>
<td></td>
<td>25.4</td>
<td>20.9</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-10</td>
<td>19</td>
<td>85</td>
<td>29.5</td>
<td></td>
<td></td>
<td>29.3</td>
<td>20.9</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-11</td>
<td>11</td>
<td>85</td>
<td>ALLOVUM</td>
<td>Light-color, Very wet, SOFT ELITY CLAY</td>
<td>CL-CH</td>
<td>28.0</td>
<td>24.5</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-12</td>
<td>2</td>
<td>85</td>
<td>ALLOVUM</td>
<td>Dark over Wet, COARSE SAND</td>
<td></td>
<td>52.0</td>
<td>35.9</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-13</td>
<td>11</td>
<td>85</td>
<td>SP</td>
<td></td>
<td></td>
<td>29.3</td>
<td>19.9</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14</td>
<td>29</td>
<td>85</td>
<td>ALLOVUM</td>
<td>Bottom of Boring @ 4'</td>
<td></td>
<td>18.2</td>
<td>20.3</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROJECT: Drilled Shaft Load Tests
LOCATION:
JOB NO.:
DATE: 6-23-08

BORING LOG No. TS 2

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>% BLOWS</th>
<th>% REC.</th>
<th>COLOR, MOISTURE, CONSISTENCY</th>
<th>GEOLOGIC DESCRIPTION & OTHER REMARKS</th>
<th>USCS CLASS</th>
<th>% MC</th>
<th>DRY DENS.</th>
<th>perf.</th>
<th>GRIT</th>
<th>DPH</th>
<th>DEP. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-6</td>
<td>18</td>
<td>95</td>
<td>S-6</td>
<td></td>
<td></td>
<td>25.4</td>
<td>20.9</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-10</td>
<td>21</td>
<td>95</td>
<td>S-10</td>
<td></td>
<td></td>
<td>29.3</td>
<td>20.9</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-11</td>
<td>12</td>
<td>85</td>
<td>S-11</td>
<td>Dark over Wet, COARSE SAND</td>
<td></td>
<td>52.0</td>
<td>35.9</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-12</td>
<td>10</td>
<td>95</td>
<td>S-12</td>
<td>Dark over Wet, COARSE SAND</td>
<td></td>
<td>52.0</td>
<td>35.9</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-13</td>
<td>17</td>
<td>85</td>
<td>S-13</td>
<td></td>
<td></td>
<td>29.3</td>
<td>19.9</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14</td>
<td>21</td>
<td>85</td>
<td>S-14</td>
<td>Deep of Boring @ 4'</td>
<td></td>
<td>18.2</td>
<td>20.3</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROJECT: Drilled Shaft Load Tests
LOCATION:
JOB NO.:
DATE: 6-24-08
Types of Risks...

- Pure Risks
- Business Risks

- Identified Risks - “Known Unknowns”
- Unidentified Risks – “Unknown Unknowns”
Maximum Value Approach

Greatest Reduction in Risk for the Cost

Compare Benefits of Response Strategies to Overall Cost

Expected Value = Probability of Risk Event \times Impact of Risk Event

Quantitative or Qualitative
Effective Responses to Risks

• Appropriate to the Severity of the Risk
• Cost-Effective
• Timely
• Realistic and within Context
• Mutual buy-in from all involved
• Ownership/Responsibility
• Primary and Backup Strategies
Threat Responses

- Avoid
- Transfer
- Mitigate
- Accept
Opportunity Responses

- Exploit
- Share
- Enhance
- Accept
Risk Management: An Opportunity for the Engineering Geology and Geotechnical Engineering Professions

- A Rational Method for Showing Value
Risk Management Resources

NHI Course No. 134065: Risk Management

Other Sources:

Questions?