Case Study: Widening Dead Man’s Gap

John R. Tomlin, PE
Engineer – Geotechnical Services
Norfolk Southern Railway Company
Project Objective

Increase safety of train traffic through an extremely tight rock cut while also removing the existing Slide Fence safety measure.
Project Location

Dead Man's Gap - NS Milepost 225A
Ooltewah, TN
Project Location
Project Location
Project Location
Location History

- Original Construction – approx. 1856
 - Val Map: 100’ R.O.W. from track centerline
Existing Conditions

- Substandard side clearance
 - TN: 8’ + 1.5”/Deg of Curve each side
 - NS: 9’ + 1.5”/Deg of Curve each side
- 5.5 Deg Curve = 9’ – 9” each side

16’ - 9”
Existing Conditions

• No drainage – ballast fouling an issue
Existing Conditions

• Existing Safety Measures
Existing Conditions

- Geologic
Existing Conditions

- Geographic Challenges
 - US Hwy 11
 - Utilities
 - Creek
 - Track Geometry
Existing Conditions

- Geographic Challenges
 - US Hwy 11
 - Utilities
 - Creek
 - Track Geometry
Existing Conditions

- Geographic Challenges
 - US Hwy 11
 - Utilities
 - Creek
 - Track Geometry
Existing Conditions

- Geographic Challenges
 - US Hwy 11
 - Utilities
 - Creek
 - Track Geometry
Existing Conditions

- Geographic Challenges
 - US Hwy 11
 - Utilities
 - Creek
 - Track
 - Geometry
Proposed Improvements

• Remove slide fence
• Widen Cut for Catch Ditch
• Shift Track
 – Improve Side Clearance
 – Improve Track Geometry
Project Planning and Preparation

- Site Survey
- Track Geometry Analysis and Design
- Grading Analysis and Design
- Permitting
- Utility Notification and Relocation
- DOT Coordination
- Train Coordination
Project Planning and Preparation

• Site Survey

• Track Geometry Analysis and Design
 – Investigation into possible track speed improvement COST PROHIBITIVE
 – Improve geometry of triple-compound curve and able to reduce track super-elevation

• Grading Analysis and Design
Track Geometry Analysis & Design

- Track Geometry Analysis and Design
 - Existing Track Timetable Speed: 35 mph
 - Desired Improvement to 50 mph
Project Planning and Preparation

• Site Survey
• Track Geometry Analysis and Design
• Grading Analysis and Design
 – Cross sections
 – 17000 CY cut, mostly rock, to be wasted on 1.8 acre site

Plan Preparation

– 18,900 CY with swell!!!
Project Planning and Preparation

Graph showing elevation changes with marked distances and labels.
Project Planning and Preparation

• Permitting
 – NOI, careful use of proper BMP’s

• Utility Notification and Relocation
 – Electric, telephone, NS Communications, Cable TV

• DOT Coordination
 – Road Closures while blasting

• Train Coordination
Project Planning and Preparation
Project Planning and Preparation
Project Execution

• Clearing and BMP Installation
• Soil Removal and Slope Scaling
• Rock Excavation
 – Hammering
 – Blasting
 – Track Preparation
 – Train Coordination
 – Drilling Pattern
 – Road Closure and Traffic Measures
 – Site Seeding and Stabilization
• Track Relocation
Clearing and BMPs
Rock Excavation
Rock Excavation
Rock Excavation
Train Coordination
Track Relocation
Track Relocation
Track Relocation
Results
Results
Results
Results
Results & Analysis

• Final Side Clearance Improvements
 – Side clearance increased from 7.5’ to 11.2’ at worst location

• Duration of project – 4 months

• Project Cost – $445,000

• Incalculable benefits
 – Track Geometry Improvement
 – Improved Safety for personnel
 – Improved Drainage – track stability and ballast life
 – Elimination of Track-outages from Slide Fence false activation
Conclusion

Transportation Projects that improve operational safety, reduce long-term cost, and affirm dedication to both safety and performance should be strong candidates for funding consideration.
Questions?