DESIGN AND CONSTRUCTION OF THE HARLAN TUNNELS

Presenter Name John Stanton

Presenter Title Chief, Geology Section Duty Location Nashville, TN Date of Presentation August 3, 2010

US Army Corps of Engineers BUILDING STRONG_®

Project Location

The Problem

Why In Harlan?

The Recommended Plan

Diversions

- Levees and floodwalls
- Pump stations and gravity outlets
- Non-structural

The Project Layout

Aerial View Along Tunnel Alignment

Feasibility of Tunnels

BUILDING STRONG®

Physical Model, Waterways Experiment Station - Flow Test

BUILDING STRONG®

Modeling the Intake With Debris.

The Tunnels Relative to Human Size.

Geology of the Project

★Approximate Location of Harlan

Landsat View, South of the Project

BUILDING STRONG®

Geologic Cross-section

Typical Section Exposed on Road Cut at Highway 421.

A good location for gathering strikes and dips.

BUILDING STRONG_®

Hance Siltstone

awood Sandstone

The Exploration Program

Single Shot Camera Borehole Survey System.

Core Recovery From the Horizontal Drilling

70% recovered as 10 ft. unbroken cores.

BUILDING STRONG®

Videotaping the Holes

BUILDING STRONG®

Polar Plot of Discontinuities

North

Different symbols for different data sources such as angle holes, televiewer, or surface mapping.

Point Load Testing Apparatus

Typical Sample After Testing

Point Load Test Data For Hole CH-1

Other Field Testing.

BUILDING STRONG®

Pull Break Tensile Test

Cross-hole Seismic Velocity Profiling

Why Do the Profiling?

Estimating Ripping Production Vs. Seismic Velocity of the Rock Mass

Direct Shear Test Averages

X-ray Diffraction Data

Unconfined Compressive Strength.

Rock Mass Classification System Analysis RMR System (CSIR)

 Rock U_c Strength (10,557 psi - 5,412 psi) 	6	з
2. RQD Rating (95 - 100)	20	20
3. Joint Spacing (1 Ft 10 Ft.)	30	20
4. Joint Roughness (Very Rough - Slightly Rough)	25	20
5. Groundwater (Dry - Moist)	10	7
6. Adjustment for Joint Orientation (Bedding)	-10	-10
Rock Mass Rating Rock Classification	82 Very Good	61 Good

BUILDING STRONG_®

Rock Mass Classification System Analysis Q System (NGI)

1.	RQD	Range From Borings	100	95	
2.	Jn	Joint # (Massive to One Joint Set)	2.0	0.5	
3.	Jr	Joint Roughness (Smooth to			
		undulating)	4.0	3.0	
4.	Ja	Joint Alteration (Unaltered)	1.0	1.0	
5.	Jw	Joint Water (Dry to Minor Inflows)	1.0	1.0	
6.	SRF	Stress Reduction Factor (Low to Medium)	2.5	1.0	
	$\mathbf{Q} = \mathbf{I}$	RQD/Jn * Jr /Ja* Jw/SRF			
Maximum (m Q = 100/0.5 * 4/1 * 1/1 = 800 Extremely Good Quality Rock			
	Minimum Q = 95/2 * 3/1 * 1/2.5 = 57			. Very Good Quality Rock	

BUILDING STRONG_®

Boundary Element Analysis

Tunneling Methods

- Drill and blast most commonly used flexible. Disruptive to rock mass.
- Tunnel boring machines For long tunnels most economical. Least flexible. Least disruptive to rock mass.
- Road headers limited rock strength.
 Most flexible. Not disruptive to rock mass.

Tunnel Excavation Plan

Phase I Top Heading by Road Header.

Phase II Bench by drill and blast with wall trimming by Road Header.

Production Comparison

Production Comparison

Top Heading Excavation Paurat Vs. Dosco

Road Headers at Work

Blasting the Bench

Tunnel Utility Layout

Ventilation System Design Silicosis Is a Concern!

Alt Regulrements:

Diesel Engines:	900 H.P. total x 100 C.F.M./H.P.	=	90,000 C.F.M.
Personnel:	15 Men x 200 C.F.M./Man	=	3,000 C.F.M.
Total Required:			93,000 C.F.M.
			And the star

System Used = 100,000 C.F.M. → Air Velocity in top heading = 200 FPM

Fan System

Jet Air Fan Model R-4200-B w/ 200 H.P., 1,800 RPM Motor

At the Heading

Scrubber

Ĭ

Alignment With Lasers

Support of the Roof..... Rock Bolts

10' long 1" \varnothing steel bolts on 5 foot centers.

Support of the Roof...... Shotcrete.

The Upstream Portal

