

Route Selection

- Plans for ridge-side connector between I-80 and 176 initiate late 1950's – strategic access between Altoona (railway work-shops and Lock Haven (light aircraft factory).
- Resurrected with dam projects (Raystown).
- Revitalized late 1970's with socio-economic drive to cross ridge into Nittany Valley.
- Final footprint a rollercoaster between valley floor and ridge crest alignments (late 1990's) to cross Bald Eagle Ridge at Skytop.

Skytop from Southwest

Skytop area stratigraphic section

	Group or Formational Names	Thickness (ft)	
	Group of Formational Names	Regional	Local
£	Hamilton Gp. (Marcellus & Mahantango)	970	
Devonian	Onondaga limestone and shale	30	
eve	Old Port limestone, shale, sandstone, chert	220	
	Keyser limestone	100	
	Tonoloway limestone & dolostone	400-820	
Silurian	Wills Creek calcareous shale & dolostone	445	
	Bloomsburg red shale, siltstone, & sandstone Mifflintown (McKenzie & Rochester) shale &	85-360	
	limestone	625	
	Rose Hill shale & Keefer sandstone	600-950	
	Tuscarora quartzite	400-500	400
_	Juniata red shales, sst, ss	700-1400	600
Ordovician Middle Upper	Bald Eagle green graywackes	600-800	700
	Reedsville shale	700-1000	~ 650
	Trenton limestones	475	
	Black River limestones	500	
	Bellefonte dolostone	1000	
ver	Axemann limestone and dolostone	0-360	
Lower	Nittany dolostone	1000-1200	
	Stonehenge limestone and dolostone	630	
Camb.	Gatesburg and Mines dolostone & sandstone	1800+	
a	Warrior limestone	600+	

C-12 Section Bedding

 π Diagram for C-12 Section of I-99 (π girdle 150/85: β = 05/060)

UNEXPECTED GEOLOGY

 Chevron folds in Tuscarora quartzite and shale.

2. Cross-strike epigene sulfide veins, mainly in Bald Eagle Sandstone.

3. Transgressive, low angle, oblique-slip faults in Reedsville Shale.

Components to Pandora's Box

- 1. Ridge crest excavations through wind gap exposing 3rd order *Chevron* folds in overturned beds of Tuscarora Quartzite.
- 2. Transgressive epithermal sulfide veins in the underlying Bald Eagle Sandstone. Long delay between excavation (~ 1 mcy, or 1.7 m tons) of 5% pyritic rock and the realization it was toxic.
- 3. In addition to steeply dipping strike-slip faults underlying the wind gap, some low angle reverse faults were day-lighted in the 350 ft deep canyon excavation

Anthropogenic (opening the lid)

- 1. Sampling protocol suited for syngenetic (bedded) sulfide deposits rather than veins.
- 2. Dump and/or fill sites not prepared for generation of acid rock drainage (ARD).
- 3. Layer-cake mixing of pyritic rock waste with limestone dust or bag-house lime.
- 4. Unawareness of sulfuricization process in the fill areas, or efflorescent mineral "blooms" in the cut faces, as well as
- 5. The reactiveness of epigene "whisker" pyrite.

What makes the perfect storm?

- Road bed excavated along the trough axis of a syncline – double "wammy" landslides.
- Change in road-bed grade and slope angle of cuts to stabilize slopes, and "load the toe" areas with buttresses.
- Use excavated pyritic rock for required "fill".
- Distribute "toxic" rock to 5 major fill/dump sites, and 114 minor sites along a 20 mile stretch of roadways.

Chevron folds and landslides at Skytop

Chevron fold in Tuscarora Quartzites

C-12 section of I-99 excavation in Bald Eagle Valley

(fold limbs are perpendicular to each leg)

Northwest limb of Chevron fold in Tuscarora Quartzite (Crest of Bald Eagle Ridge)

Bald Eagle Ridge:C-12 section land slide headwall

Cross-Section Sketch of Buttress Area

- Recharge area between Stations 816+00 and 843+80 = 1,460,000 sq. ft.
- 17.9 gallons of ground water/day/linear foot at base of buttress
- Rain fall ~ 40 inches/year → Infiltration rate = 20 ± 3 inches/year

C-12 Section

Note grade change in N-bound lane by 17 ft for approx 1 mile.

"Fill is pyritic"

rock

Structural models for Skytop

NATURE OF SULFUR-BEARING DEPOSITS

- Forms of sulfur (native, sulfides, sulfates, thio-sulfur organic compounds, and sulfosalts).
- Approx 200 common minerals with sulfur.
- Types: epigene, syngene and supergene.
- Weathering and alteration (supergene processes):
 - REDOX (Eh and pH dependent)
 - Gossan and Oxidized Cap Rock (OCR) from leaching above ground water table
 - Evaporation (Efflorescent Minerals, Acid Sulfate Soils and Sulfuricization)
 - Expansion due to alteration

3/7/2005 HV Mag Pressure WD Det Temp —500.0µm—4:38:58 PM 20.0 kV 50x 0.83 Torr (6.9 mm LFD)

Skytop-1205a_001 (Sicree)

Skytop-1200-a 009 (Sicree)

formag (Mathur)

Skytop 1206a_005 (Sicree)

SEM Images Skytop pyrite.

Note blade and needle habit of "whisker" pyrite

Tentative List of Skytop Minerals

Sulfides:

Pyrite	FeS ₂		cubic
Marcasite	FeS ₂		ortho
Pyrrhotite -4C	Fe _{1-x} S	(typically Fe ₇ S ₈)	momo
Pyrrhotite -7C	β-Fe _{1-x} S ₈		hex
Chalcopyrite	Cu FeS ₂		tetr
Tennantite?	(Cu,Fe) ₁₂ As ₄ S ₁₃		cubic
Sphalerite	ZnS		cubic
Wurtzite?	β-ZnS		hex
Greenockite?	CdS		hex
Galena	PbS		cubic

Phosphates:

Wavellite	Al ₃ (PO ₄) ₂ (OH,F) ₃ · 5H ₂ O	ortho
Variscite	AlPO ₄ · 2H ₂ O	ortho
Woodhouseite	CaAl ₃ (PO ₄)(SO ₄) (OH) ₆	trig

Oxides and oxy-hydroxides

Quartz	SiO2	hex
Hematite	Fe ₂ O ₃	trig
Limonite/Goethite	FeOOH	ortho
Lepidocrocite?	γ-FeOOH	ortho
Akaganeite	β- FeOOH	tetr
Jarosite	KFe ₃ (SO ₄) ₂ (OH) ₆	hex

Efflorescent minerals:

Copaipite	$Fe^{2+}Fe^{3+}_{4}(SO_{4})_{6}(OH)_{2}\cdot 20H_{2}O$	tric
Halotrichite	$Fe^{2+}Al_2(SO_4)_4 \cdot 22H_2O$	mono
Gypsum	CaSO ₄ ·2 H ₂ O	mono
Melanterite	FeSO ₄ ·7H ₂ O	mono

Other suspected phases:

Barite	Ba SO ₄	ortho
Dante	Da 504	Ortito

Other trace elements:			
Cd, As, Sb, Au,	Ag, Hg,	probably epigenetic in pyrite	
Zr	probably	ly detrital (syngenetic) zircon in sandstone	
Y	probably	detrital (syngenetic) xenotime in sandstone	

HYDROTHERMAL VEINS Reducing Sulfide-bearing fluids

- Main veins are transgressive 140-170°/vertical
- Close relationship to J2 joints
- Metasomatism (add S, Fe++, Cu, Pb, Zn, Cd, As, Ga, Ge, and Sb; lose Si, Al, K, Ti, V, Th, Y, La, Ce, RE mainly by dilution). Barite, Phosphate-minerals and quartz in exterior veins
- Quartz fluid inclusion temps 150 to 380° C
- Reduction halos in Redbeds
- Argillic alteration in shales
- Gossan above water table in Oxidized Cap Rock

C-12 Section Joints

Scatter Plot: N = 155; Symbol = •

A-12 Pyrite-bearing Veins

Evidence for hydrothermal activity

- Mineralogy: sulfides (pyrite and pyrrhotite), sulfates (barite), phosphates (wavellite).
- Habit: veins and stockworks.
- REDOX (reduction haloes and fronts).
- High fluid inclusion temperatures in associated quartz (150 to 360°C)

Summary: Epigenetic Vein Deposits

- Best preserved in brittle rocks (i.e. ridges).
- Most likely in wind and/or water gaps.
- Locations difficult to predict (lineaments?).
- Different level of geologic expertise needed.
- Sampling strategy needs to be adjusted for steeply dipping veins.
- More unwanted trace elements and more reactive than bedded pyrite deposits.
- Weathering imposed zones from leached rock at the surface, to oxides on the water table, downward to sulfides.

Sketch showing cross-strike nature of the late sulfide veins at Skytop

SOME CONSEQUENCES OF OXIDIZING PYRITE

1. Production of Sulfuric Acid

2. Volumetric expansion with alteration of pyrite to Fe- sulfates

3. Reaction of sulfuric acid with and added carbonate "neutralizers" to form potentially lethal carbon dioxide gas

Evidence for sulfuricization activity

- Leached zone (Gossan) & "Oxidized Cap Rock" (OCR) (rainbow rock).
- Drop in pH in ground water and streams (increase in sulfates and iron).
- Drop in pH in acid weeps and seeps.
- Transient Efflorescent mineral "blooms" in vadose zone exposures (seeps and weeps).
- Efflorescent minerals on fresh sulfide exposures.
- Efflorescent minerals adjacent to "toxic" fill.
- Stressed vegetation.

REDOX Interface, with efflorescent copaipite

2Fe = 10° 25500 mg/L 250y = 10° 276.000 mg/L

Conceptual Model of Supergene Sulfuricization

Model after Burkart et al. (1999), Chigma and Oyama (1999), and Fanning et al. (2002).

Remediation Material

- Must have neutralizing as well as buffering properties.
- Mass balance versus sequestration.
- Mass balance works only if:
 - mixing is rigorous,
 - similar grain size with particle to particle contact between reactants.
- Channelizing and gypsum armoring.
- When Bag House Lime, containing Calcite (CaCO₃),
 Portlandite (Ca(OH)₂), Lime (CaO)
 - Is saturated with water it forms highly alkaline slaked lime, with a pH > 12, that dissolves Al and precipitates alumina gel if pH is reduced
 - (also dissolved zinc-coated drainage pipes).

Alumina gel – 3.59% Zn

Epsomite and calcite on bauxsol

REMEDIATION PLAN IMMOVABLE PYRITIC ROCK

- Cover 2 bedrock cut faces with carbonate neutralizer mixes and geosynthetic textile
- Cover pyritic rock fill deemed "immovabe"
 - in elevated road bed (1 mile bifurcation zone)
 - and buttresses (to load toe of landslide in landslide prone area)

Estimated cost of \$14 million

NB: Temporary PVC cover very effective

Geoweb, containing # 57 aggregate on dressed slope

Little Cut-face covered with geoweb and aggregate July, 2011

REMEDIATION PLANS MOVEABLE PYRITIC ROCK

- Legal imperative to move the pyritic waste dumps out of Buffalo Run drainage basin
- Develop an Engineered Rock Placement
 Area (ERPA) for approx 1 million tons of
 pyritic rock plus admixed Bag House Lime
 to 40 acre site near Port Matilda (Dry tomb
 concept with 23 acre footprint)
- Estimated cost of \$26 million

volumes of suifide-bearing rock in fill or waste piles at akytop

LOCATION	ESTIMATED TOTAL QUANTITIES CUBIC YARDS	ESTIMATED ACID ROCK QUANTITIES CUBIC YARDS
Trumbull Batch Plant	322,426	15,425
Bifurcation/Buttress	794,000	264,063
Skytop waste pile	99,114	93,114
Siebert waste pile	310,000	239,857
S.R. 3042 fill	137,725	62,100
Crushed rock pile in cut	28,187	28,187
Arbogast (pile/material on top	o) 11,317	11,317
Arbogast waste pile	433,521	27,291
Structure 317 fill	951,000	158,402
Sellers Lane fill	533,000	18,983
Blue Course Drive (off site)	52,528	To be determined
Total	3.666.818	918.739

27 Acre Footprint of Engineered Rock Placement Area (Dry Tomb)

ERPA near completion 6/11/08 (approx 3.8 m tons)

SEQUENCE OF EVENTS

- 1. Strike joints (J1) associated with Early Alleghanian folds.
- 2. Small clusters of pyrite in Bald Eagle Sst due to Late Alleghanian gas drive, (also reducted most of the red sandstone to its current grayish green color.
- 3. Late to Post Alleghanian cross-strike J2 joints (probably post-Palisadian).
- 4. Pyrite veins spatially related to J2 joints.
- 5. Re-Os age of 35 Ma for pyrite in NNE-trending fault zone is an enigma.

Geological Conclusions

- Timing Post Alleghanian Orogeny: related to cross-strike fractures in lineaments.
- Depth from fluid inclusions 5-10 km.
- Unroofing from fission track and vitrinite reflectance 5-8 km.
- Main Veins in J2 joint sets.

Conclusions

- 1. Need for inter-disciplinary interactions.
- Nature and origin of sulfide mineralization must be known and understood.
- 3. An Effective Sampling Strategy is crucial.
- 4. Most effective remediation is to exclude either oxygen or water (preferably both).
- 5. Current "neutralizing" materials need reevaluation (problem with "mixing" and armoring with gypsum and "yellow boy").

Recommendations

- 1. Must understand geology prior to construction, especially through wind and water gaps.
- 2. Avoid costly over-runs by "proper and adequate" characterization of excavated rock (mineralogical, chemical and physical) prior to redistribution.

Timeline

Towards a Protocol

- Is database adequate? Unlikely soles of the boot field work is cheap.
- If sulfur anomaly is identified, determine nature and type of deposit.
- Adjust sampling strategy and plan to determine size, shape and grade.
- Plan excavation to minimize exposure of pyrite:
 - develop plan to neutralize and buffer or render inactive excavated pyritic rock;
 - develop plan to cover pyritic rock in bedrock cuts;
 - develop plan for long term water treatment.

Flow Chart for Evaluating Potentially Sulfidic Material in the Pre-Design Phase of Highway Construction (after Byerly, 1990 & 1996)

Sulfide4.pdf

Acknowledgements

- PennDOT has been positively reactive in understanding the anomalous conditions at Skytop, and proactive in developing preventative protocols.
- Open File Reports available on PennDOT and PADEP websites: also at
- http://www:geosc.psu.edu/news/feature/gold/skytop.htm
- Amer. Soc. Civil Eng., 2008. Eastern Section, 23rd Proc. Paper 1. 23p.

Category 7: Landslide in inert colluvium

