Landslide Mapping Using LiDAR: Kenton and Campbell Counties, Kentucky

Matt Crawford

UNIVERSITY OF KENTUCKY
Kentucky Geological Survey

12th Annual Technical Forum
GEOHAZARDS IN TRANSPORTATION IN THE APPALACHIAN REGION
July 31 – Aug 2nd, 2012
Beckley, WV
Kentucky and Campbell Counties, KY
The Problem

Natural geology, topography, and decades of slope modification make Kenton and Campbell Counties susceptible to landslides, many recurring.

Example costs:

- 71 landslide geotechnical reports from KYTC…unknown cost
- 55 landslides located from other sources
- April-May 2011 storms cost KYTC District 6 over $4 million
- FEMA is about to submit a letter of intent for a 2.5 million dollar stabilization project in Bellevue, Ky. Campbell Co.
Landslide Types

TRANSLATIONAL SLIDE
- scarp
- failure plane
- debris pile at toe
- accumulation zone or toe

ROTATIONAL SLIDE
- scarp
- failure plane
- unconsolidated colluvium, drift, soil, or alluvium
Kenton and Campbell Co.,
landslides

Creep and generations of
failure
Kenton and Campbell Co.

landsides

Creep and generations of failure
Kenton and Campbell Co.

landsides
Light Detection and Ranging (LiDAR) Project

- **Purpose**: develop a methodology using LiDAR data in the geologic setting of Kenton and Campbell Co. and to document landslides

- LiDAR flown in 2007. Data provided by the NKAPC

- Modeled after other states: OR, WA

- Completed March 2011, grant from the USGS Landslides Hazards Program
10 m DEM-hillshade, Campbell Co., Ky. Vs. 1 m resolution LiDAR
Methodology

• Used Quick Terrain Modeler to create hillshade DEM’s from the LAS files

• Add DEM’s to ArcMap for visualization, spatial analysis, and digitization

• Systematic panning looking for
 ➢ Hummocky surface
 ➢ Steep scarp, flanks
 ➢ Thick toe
 ➢ Concavity

• Reexamined potential landslides in QTM

• Performed field checking
Example: LiDAR derived hillshade DEM with contours

Mapped landslide
Example: LiDAR derived hillshade DEM without contours

Mapped landslide

750 ft.
Example: LiDAR derived hillshade DEM with contours.
Example: potential landslide identified on LiDAR derived hillshade DEM. Azimuth and sun angle at 45°
Three-dimensional view of the same landslide in Quick Terrain Modeler. Changing the sun angle and azimuth can make the scarp and flanks stand out. The image was rotated in 3D and the azimuth was changed to 225°.
Other Useful Data Sets

- Topographic contours
- 1:24,000-scale geology
- Slope
- Leaf-off aerial photography
- Roads
- Bing!
Results

- 230 potential landslide extents digitized (polys)

- Approximately 10% were initially attributed with high confidence, rest were questionable

- 45 landslides (approx. 40%) of landslides were field checked
 - ✓ 20 were confirmed
 - ✓ 18 were likely or observed but could not be determined
 - ✓ 7 were not accessible
Field checking
Field checking
Preexisting slides as indications of subsequent failure

3 separate incidences of failure after slope was mapped with landslide from LiDAR
Mudslide/debris flow in Bellevue, KY. Campbell Co. December 2011
Another example of subsequent failure
Conclusions

- Project successfully used LiDAR for identifying potential landslide extents

- Able to map slides in areas not accessible by roads.

- Urbanization of Kenton and Campbell Co. made visualization difficult and probably masked many other existing slides

- Project was limited by time and ability to field check landslides

- Mapping preexisting landslides is an indication of areas susceptible to future slope failure.

- As Kentucky acquires more LiDAR, similar projects will be very beneficial in other landslide prone parts of the state.
Thank you!

Matt Crawford

mcrawford@uky.edu