Case Study: West Virginia US Highway 19 “The Narrows”
Rockfall Mitigation

William F. Kane, PhD, P.G., P.E.
KANE GeoTech, Inc.
Stockton, California

Roger Moore, P.G., P.E.
Ameritech Slope Constructors, Inc.
Asheville, North Carolina

12th Annual Forum
Geohazards Impacting Transportation in the Appalachian Region
Beckley, West Virginia
July 31-August 2, 2012
Frank Amend, Geobrugg North America, Rocky Mount, North Carolina

Doug Gould, West Virginia Department of Transportation, Weston, West Virginia
• U.S. Highway 19 connects Weston, West Virginia primarily as commuter route to neighboring counties
• Site parallels the New Fork River
 – Also known as “The Narrows”
• Along a cut-slope
 – approximately 900-ft long
 – On-going rockfall problem
“The Narrows”
Participants

• Project was bid as a conceptual design with design-build aspects
 – Owner, West Virginia DOT

• Joint Venture
 – Ameritech Slope Constructors, Asheville, North Carolina
 • Contractor
 – Geobrugg North America, LLC, Algodones, New Mexico
 • Rockfall mitigation system manufacturer
 – KANE GeoTech, Inc., Stockton, California
 • Design engineer

• General Contractor-Orders Construction
1. Conceptual plans developed by WVDOT
2. Preliminary investigation prior to slope clearing
 • Review and assess the original conceptual plans
3. Initial analyses and 90% design
4. Preliminary construction drawings
5. Slope was cleared of all vegetation
6. Construction began
7. Second phase of investigation
 • Optimize design and refine approach
8. Engineer was present during the entire construction process
 • Ensured conformance to plans
 • Made any necessary changes as construction progressed
 • Provided technical support to the contractor as necessary
• Located within the Appalachian Mountain range
• Continental climate
 – Hot, humid summers
 – Cool to cold winters
• About 45-50 inches of precipitation annually
• Mostly of flat lying Pennsylvanian Age strata
 – Inter-bedded sandstone
 – Shale
 – Coal
 – Differential weathering of the shale and coal layers beneath massive sandstone beds
 – Cantilevered sandstone beds
 • Relatively resistant sandstone beds become vertical cliffs
 • Relatively weak shale beds form recessed slopes
 • Create rockfall hazard
Site Conditions

- **Cut slope**
 - Approximately 900-ft long
 - Vertical slope heights varying from approximately 20-ft to 65-ft
- **Upper slope was composed of a 20-ft thick massive sandstone bed**
- **Directly underneath the sandstone was a 35-foot thick layer of black to brown shale with coal seams and lenses**
- **Just beneath the shale layer was a 5-ft section of massive sandstone**
- **Massive rockfall**
 - Large joint spacing in the sandstone
 - Combined with rapid weathering of the underlying shale and coal layers
Large, cantilevered, sandstone blocks
• Project divided into three sections
 – Nature of the hazard
 – Relative risk of rockfall
• Sections 1 and 3 had Geobrugg Rolled Cable Net (RCN) with a secondary chain link mesh backing
• Section 2 was to have 76 pattern rock bolts
 – Secure large, massive sandstone blocks at the highest portion of the cut
 – Draped over the entire cut slope with RCN and conventional chain link mesh
• Conducted prior to construction
• Verify original WVDOT conceptual mitigation plan
• Collect data
 – Analyses
 – Design
 – Prepare working drawings
• Evaluate existing global slope stability
• Further evaluate potential rockfall hazard
Data collection

- Slope was densely covered with vegetation
 - Difficult to get a good picture of conditions
 - Data collection was difficult and time-consuming
- Standard field data collection procedures were used
 - Slope height and angle
 - Geology
 - Potential rockfall sizes and shapes
 - Surface conditions
 - Rockfall run-out data
 - Soil properties
 - Photographs and notes
- Large outcrops in Section 2 were measured for size
Slope clearing and beginning construction

Ameritech Slope Constructors, Inc.
• Slopes were analyzed for kinematic global slope stability
• Decision to consider anchored tensioned mesh system in Section 2
 – Replaced rock dowels and drapery system
• Because of the unknown depth of the large jointed sandstone blocks WVDOT specified that the SPIDER anchors be drilled 25-ft into the sandstone
 – Anchored the tensioned mesh
 – Anchors served as rock dowels
RUVOLOM® ROCK software

- Used to design tensioned wire mesh, rock block stabilization systems
 - Geobrugg SPIDER S4-230 mesh
- Utilizes limiting equilibrium analyses
 - Determine force vectors necessary to restrain a large block onto a slope face
 - Program output
 - Pattern of anchors around the block
 - Necessary tensioning forces to achieve a specified factor of safety.
- Drapery and SPIDER anchor depths
 - Determined and checked using the Post-tensioning Institute (PTI) guidelines

Ameritech Slope Constructors, Inc.
• Conducted after brush cleared and construction begun
• Refine drapery layout and anchor locations
• Landslide hazard revealed
 – Loose soil and colluvium and additional loose material removed
• Phase 2
 – Provided much additional insight into the project design
- Final mitigation plans for each section were completed
- Final layout and anchor plan was developed
• Detailed calculations and plans from Phase 2
• Finalized change from a rock bolt and draped slope at the top of the middle section to a tensioned SPIDER system
 – Design was more effective for the purpose of full retention of the outcrops in Section 2
1. Initial rockfall project designs should be open to changes

- Once slopes are cleared of vegetation, rockfall conditions can be quite different than initially thought
- Initial designs should be general enough to allow for modification
 - But specific enough to allow a realistic bid process
2. Consider design-build

- Sometimes in-house personnel lack rockfall analyses and design experience
- Owners should consider design-build concepts by joint ventures between contractors, manufacturers, and engineers
- Specialty professionals have a great deal of experience and expertise that they can bring to bear on projects
3. Require engineered designs

• Many projects in the past were designed and built using on-the-fly solutions
• Methodologies for investigation have evolved as the discipline has developed over the years
• Many tools, based on sound engineering and scientific principles are available to provide well-engineered designs
4. Retain the original design engineer for construction oversight and require that the contractor use the manufacturer’s representative

– Rockfall mitigation systems are not that commonplace
– Inexperienced inspectors generally are not able to identify problems or irregularities during construction, or ensure conformance to the original design concepts
– Retention of the design engineer for at least periodic inspections is essential to prevent large problems at the end of the project
– Reputable manufacturers supply a certain amount of technical assistance with the sale of the products
THE END

Thanks for your attention!