Restoration and Rehabilitation of the Big Slackwater Section of the Historic C&O Canal Along the Potomac River

Martin J. Woodard, PhD, P.G. P.E.
mwoodard@haleyaldrich.com
History of the C&O Canal

• Importance of Waterways to Colonial America
 • Chesapeake Bay
 • Potomac un-navigable due to Piedmont.
• George Washington’s Patowmack Company 1785.
• Erie Canal Success (1817-1825)
History of the C&O Canal

• Construction on Chesapeake & Ohio Canal began July 4, 1828
 • 1831: Seneca, MD
 • 1834: Harpers Ferry, WV
 • 1839: Woodmont, MD
 • 1850: Cumberland, MD

• Baltimore & Ohio Rail Road
 • Started at same time as C&O Canal
 • Completed in 1842 along same route and C&O canal.

Photos courtesy of C&O National Historical Park
History of the C&O Canal

- Transported Coal from Cumberland MD
- Trip took 4.5 Days from Cumberland to Georgetown (D.C).
- Mules towed 92 foot long barge loaded weight 120 tons.
- 540 boat trips a year peak performance.

Photos courtesy of C&O National Historical Park
History of the C&O Canal

• Fall of the C&O Canal
 • Started with the 1889 Johnstown, PA Flood.
 • A series of large floods ruined the canal
 • No money to repair the damage
 • 1924: B&O Railroad bought and operated the canal until when floods damaged and drained parts of the Canal
 • U.S. Government was given the canal by B&O to overlook $2 Million in debt.
 • 1950: Justice William Douglas stopped the plan to turn it into a scenic highway.
 • 1961: Designated a National Monument by President Eisenhower.
 • 1971: Designated a National Park by President Nixon.

Photos courtesy of C&O National Historical Park
Geologic Setting of the C&O Canal

- Crosses five physiographic provinces (three major)
 - Coastal Plain – **Piedmont** (Potomac and Westminster Terrane, Culpepper Basin, Fredrick Valley, Blue Ridge)– **Valley and Ridge** – Appalachian Plateaus.

![Geologic Setting Map](OFR-01-188B)

After Southworth et al., 2001
Study Area: Big Slackwater

USGS Quadrangle: Williamsport, MD
Conococheague Formation, a massive Upper Cambrian limestone
Advanced Karst Topography
Toe Path (Circa 1989)
Value Engineering

- Original Design
 - Rock Socketed Caissons
 - Difficulty in construction

- Value Engineering
 - Rock Anchored Spread footing
 - 8 Bridges
 - 121 Piers
 - Loads
 - Uplift, river flow, flood, ice flow

- 8 Bridges
- 121 Piers
- Loads
- Uplift, river flow, flood, ice flow
Top of Rock

- Minimal Subsurface investigation.
- 4 borings, 4 test pits
- 2 mile long project
- Gaps in Information
Bridging the information Gap: Electrical Resistivity
Foundation Excavation
Foundation Preparation
Anchor Installation Issues

- Flooding stopping progress
- Hole collapse after drilling
- Highly eroded rock
- Fractures
- Solution cavities
- Artesian well conditions
Rock Anchors

- 121 Piers (849 anchors total)
 - 7 Anchors per pier
 - 6 vertical
 - 1 angled down
 - Loads
 - Uplift, river flow, flood, ice

<table>
<thead>
<tr>
<th>Type</th>
<th>Diameter</th>
<th>Tensile Load</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1 in.</td>
<td>77 kips</td>
<td>20’ deep</td>
</tr>
<tr>
<td>II</td>
<td>1 3/8 in.</td>
<td>142 kips</td>
<td>28’ deep</td>
</tr>
<tr>
<td>III</td>
<td>1 ¾ in.</td>
<td>240 kips</td>
<td>40’ deep</td>
</tr>
</tbody>
</table>
Flooding
Anchor Testing Issues

- Flooding
- Incorrectly calibrated jack
 - Load Cell Fix
- Two Failures.
 - 1: Manufacturing flaw
 - 2: Initial anchor failure
 - Redesign of Pier.
Super Structure/ Jet Grouting
Final Product
Thanks!

- National Park Service
- Cianbro
- Richard Lawrie & Assoc.