Lessons Learned from Application of Ground-Based Digital Photogrammetry to Small-scale Movement on Unstable Rock Slopes: A Case Study from Virginia's Valley and Ridge.

William L. Niemann₁

1 – Marshall University Geology Department Huntington, West Virginia 25701

Digital photogrammetry presented here is a supplemental part of a larger project:

"Sinkhole Detection and Bridge/Landslide Monitoring for Transportation Infrastructure by Automated Analysis of Interferometric Synthetic Aperture Radar Images (InSAR)"

> Scott Acton, *University of Virginia* Edward Hoppe, *VTRC;* Brian Bruckno, *VDOT Adrian Bohane; Giacoma Farloni, TRE*

Technologies Tested

- Interferometric Synthetic Aperture Radar Images (InSAR)
- Light Detection and Ranging (LIDAR)

• Ground-based Digital photogrammetry (GBDPG)

Digital Photogrammetry–Introduction

- Case Study
- Discussion
- Conclusions

Uses of GBDPG:

- Developed specifically for mapping open-pit mine rock faces (Poropat, 2005, 2006)
 - Mine/quarry blasting strategies/effectiveness
 - Volume calculations

• Rock mass characterization (partial) (e.g., roughness, wall strength, weathering, of joints should be confirmed manually)

- Rock slope characterization/stability
 - Fracture flow
- Underground applications: mining, tunneling, etc.

• Measuring small-scale displacement on active rock slopes (proactive monitoring)

Potential Benefits of GBDPG

- Maps large areas quickly, accurately.
 - Low cost: inexpensive equipment, short field and processing times.
- Allows evaluations/measurements of inaccessible or unsafe areas.
- Permanent 3D record permits "virtual fieldwork."
 - Robust 3D Model based on dense XYZ point coupled with photograph.

Limitations of DPG:

- Affected negatively by non-reflective surfaces: vegetation, horizon, shadow, irregularities, shallow slope angles, etc. (The above can also limit success of LIDAR)
 - Software issues
 - Coordinate issues

Required Resources

- DSLR Camera w/fixed-length lens(es)
 - Nikon D-90 (12.3 megapixel) w/24-mm lens
- Tripod with triaxial head and leveling plate
 - Manfrotto 460 magnesium head or equivalent
- DPG Software
 - *Sirovision®* (v. 4.1)
- Total cost ~\$3,000
- +Cost of location control: surveying, range finder, GPS

Ground-based Digital Photogrammetry (GBDPG)

• Relative versus Absolute coordinates

• Semi-quantitative vs. Quantitative DPG

Latitude	Longitude	Northing	Easting	Elevation, ft	Code	Locality	Intuitive Name
38.18690	463 -79.23869578	6751973.3930	11270600.0640	1757.771	C1	0042-001	Route 42 C1
38.18689	-79.23866231	6751970.6540	11270609.6630	1757.602	C2	0042-001	Route 42 C2
38.18698	469 -79.23851201	6752002.1230	11270653.1170	1769.104	RSF	0042-001	Route 42 Rock Slope Face
38.18684	-79.23842806	6751949.9320	11270676.8290	1757.077	HDS1	0042-001	Route 42 HDS 1
38.18691	-79.23896211	6751976.8150	11270523.5410	1760.525	HDS2	0042-001	Route 42 HDS 2
38.11643	-79.44372383	6726850.7440	11211408.7510	1571.637	C1	0600-001	Route 600 C1
38.1164	-79.44371343	6726860.6770	11211411.8450	1571.562	C2	0600-001	Route 600 C2
38.11652	-79.44392219	6726884.4060	11211352.0260	1603.452	RSF	0600-001	Route 600 Rock Slope Face

Example GBDPG Geometry

t1

GBDPG Geometry at Project Rock Slopes

Site	C1-C2 (ft)	C1-GCP (ft)	C2-GCP (ft)	C1 Height (ft)	C2 Height (ft)
629-001 (Lower)	26.02	83.13	83.61	5.54	5.50
629-001 (Upper)	26.02	177.02	176.11	5.54	5.50
629-002	15.97	109.46	108.29	5.42	5.29
629-003	8.75	57.50	57.04	5.04	5.29
064-001	19.54	127.15	130.10	5.21	5.13
600-001	10.41	73.21	71.98	5.00	4.96
042-001	10.02	60.93	54.36	5.08	5.17
Greenville Road	3.16	23.72	25.07	4.29	4.54

Accuracy of Method

• Point (Spatial) vs. Orientation accuracy

- How determined?
 - Theoretical
- Controlled Environment
 - Field Environment

Published Accuracy of Method

(expressed as spatial error)

Theoretical

• 1/10,000 = 0.01%, (Shaffner et al.,2004)

Controlled environment

• ±5 mm/95 m (relative to theodolite) = 0.005% (Poropat,2005, 2006)

Field environment

- 0.7 to 4.7 in/~50 ft (relative to theodolite) = -0.1% to -0.8%
 - (Shaffner et al.,2004)
 - 1.7 ft/500 ft (relative to theodolite) = $\sim 0.3\%$
 - (Stohr et al., 2011)

Case Study: application of GBDPG to small-scale

movement on six rock slopes in Virginia's Valley & Ridge

Stratigraphy of project rock slopes

ERA	PERIOD	STRATIGRAPHIC UNIT	SITE	LITHOLOGY
	Devonian	Brallier Fm.	RS-629-001, 002, 003	Shale, slate, sandstone
	Silurian	Licking Creek Fm.	RS-600-001	Cherty limestone
eozoic		Keyser Fm.	RS-042-001	Limestone, dolomite, "marble"
Pal		Beekmantown Gp.	RS-064-001	Cherty limestone
	Cambrian			

RS-629-001

- Catastrophic slope failure in 2009 (10K yds³).
- Folded and jointed beds.
- Clastic metasediments of Brallier Formation (Devonian).
- Dip slope (35 deg.) on lower cut.
- Upper and lower

slopes imaged separately.

RS 629-001

Catastrophic slope failure in 2009 (10K yds³)

RS 629-001

Line survey of discontinuities measured with Brunton compass (Morris, 2012)

Monitoring Schedule

- Six rock slopes
- Photographed quarterly
 - First event: November 2011
 - Final event: November 2012

RS 629-001

Displacement Calculations

RS-629-001 maximum displacement vectors,

March 2012 versus November 2012

Displacement Calculations from Sirovision®

Site	Area (ft²)	Average (ft)	Average Depth (ft)	Maximum (ft)	Maximum Depth (ft)	Volume (ft ³)
629-001 (Lower)	334	-0.98	-1.19	-2.07	-2.53	-326.1
629-001 (Upper)	189	-0.15	-0.18	-0.70	-0.85	-28.5
629-002	107	1.58	1.95	2.85	3.52	169.2
629-003	23	-1.47	-4.30	-3.55	-10.38	-33.2
064-001	281	2.49	9.63	9.63	15.76	701.2
600-001	73	0.09	0.12	0.46	0.60	6.4
042-001	11	-0.20	-0.45	-2.00	-4.48	-2.2
Greenville Road	4	-0.08	-0.10	-0.38	-0.32	-0.3

31

Check on field point accuracy

Check on field point accuracy

		Site	S (ft)	Z - Error (ft)	Z - % Error	
		629-001 (Lower)	83.5	0.042	0.050	
	= acceptable	629-001 (Upper)	176.5	0.213	0.121	
-	= not acceptable	629-002	109.0	0.305	0.280	
		629-003	57.3	0.058	0.100	
		064-001	128.0	0.030	0.023	
		600-001	72.5	1.688	2.328	>> 0.8%
		042-001	57.0	0.023	0.040	
		Greenville Road	24.5	0.272	1.110	>> 0.8%

Assessment of Possible Error

in Displacement Calculations

- Site Conditions
- Software flaws
- Inaccurate coordinates

Controlled Simulation

Controlled Simulation

Assessment of Possible Error

in Displacement Calculations

- Site Conditions
- Not a factor at most sites
 - Software
 - Insignificant
 - Coordinates
 - Residual error

Displacement

adjusted for error

Site	Z-Displmt. (ft)	Z - Error (ft)	Adjusted Displmt. (ft)	
629-001 (Lower)	-1.19	0.042	- 1.15	
629-001 (Upper)	-0.18	0.213	0.00	
629-002	1.95	0.305	1.64	
629-003	-4.30	0.058	-4.24	
064-001	9.63	0.030	9.60	
600-001	0.12	1.688	0.00	-
042-001	-0.45	0.023	-0.43	
Greenville Road	-0.10	0.272	0.00	4 (39

Displacement

adjusted for error

= acceptable = not acceptable

Site	Z-Displmt. (ft)	Z - Error (ft)	Adjusted Displmt. (ft)	
629-001 (Lower)	-1.19	0.042	- 1.15	
629-001 (Upper)	-0.18	0.213	0.00	
629-002	1.95	0.305	1.64	X
629-003	-4.30	0.058	-4.24	
064-001	9.63	0.030	9.60	**
600-001	0.12	1.688	0.00	-
042-001	-0.45	0.023	-0.43	
Greenville Road	-0.10	0.272	0.00	40

Displacement

adjusted for error

	= acceptable
-	= not acceptable

Site	Z-Displmt. (ft)	Z - Error (ft)	Adjusted Displmt. (ft)	
629-001 (Lower)	-1.19	0.042	- 1.15	
629-001 (Upper)	-0.18	0.213	0.00	
629-002	1.95	0.305	1.64	SE SE
629-003	-4.30	0.058	-4.24	
064-001	9.63	0.030	9.60	SE
600-001	0.12	1.688	0.00	SE/SC
042-001	-0.45	0.023	-0.43	
Greenville Road	-0.10	0.272	0.00	

Conclusions

- Displacement calculations are a function of point (spatial) accuracy.
- Spatial accuracy of ~0.1% can be expected from GBDPG when site conditions permit high quality photographic images and reference coordinates are accurately determined. Software error is ~0.01% and does not limit accuracy.

Conclusions

• For large majority of rock slopes (6/7) spatial accuracy is comparable to published field applications of GBDPG (~0.1%).

- For smaller majority of rock slopes (4/7) displacement (or lack thereof) adjusted for spatial accuracy is considered both "real" and reasonable.
- Unacceptable error for minority of slopes (3/7) attributed to:
 - Poor quality images influenced by site conditions

Survey error

- "Photogrammetry is the art, science, and technology of obtaining reliable information about physical objects and the environment through the processes of recording, measuring, and interpreting photographic images..." (ASPRS, 2004)
- Ground-based (i.e., "close range terrestrial") digital photogrammetry (GBDPG) is a remote sensing tool that uses paired 2D photographs (stereoscopy) obtained and processed digitally to produce 3D models of comparable quality to those derived from manually acquired field data.

Goals of DPG and LIDAR:

• Provide ground-truthing of InSAR results on rock slopes (GBDPG and LIDAR) and bridge displacements (LIDAR).

• Direct comparison of results (GBDPG vs. LIDAR).

Rock Slope Descriptions

- **RS-00629-001**
- **RS-00600-001**

RS-00600-001

- Dip slopes (40 deg.) of cherty, wavy-bedded limestone.
- Helderberg Group (Devonian-Silurian).
- High-angle joints intersect bedding and slope, form blocks.

Displacement Calculations from Sirovision®

- Numerical displacement
 - Normal to surface
 - Negative versus positive
 - Average and maximum
- Areas of calculated maximum displacement potentially useful for qualitative assessment

RS-600-001 maximum displacement vectors,

November 2011 versus November 2012

Conclusions

PARAMETER >	AREA	SINK- HOLES	INFRA- STRUCTURE	ROCK SLOPES	COST
InSAR	Broad	Maybe	Yes	No	\$\$\$
LIDAR	Focused	No	Maybe	Yes	\$\$
DPG	Focused	NA	NA	Yes	\$

Preliminary Results

- +InSAR: Covers broad area, shows infrastructure well under right conditions, potentially useful for karst.
- - InSAR: Did not resolve rock slopes well.
- +LIDAR: Covers focused area, shows slopes well, potentially useful for bridges.
- -LIDAR: Poor results for karst, expensive, kinematic analysis difficult.

Check on point accuracy

1. Check using field data

2. Check using data from controlled environment

Displacement Simulation

Conclusions

- Covers focused area, shows slopes well, moderate cost, amenable to kinematic analysis.
- Ability to yield reliable quantitative results for displacement on rock slopes is promising.