Monitoring the Transportation Infrastructure with Satellite-Based Interferometric Synthetic Aperture Radar (InSAR)

A.Vaccari, M.Stuecheli, S.T.Acton

Virginia Image and Video Analysis (VIVA)

University of Virginia

B.S.Bruckno

ABANDONED UNDERGROUND MINES

Virginia Department of Transportation

Virginia Image and Video Analysis

13th Annual Technical Joint Forum Geohazards Impacting Transportation in Appalachia Interstate Technical Group on Abandoned Underground Mines

Disclaimer

"The views, opinions, findings and conclusions reflected in this presentation are the responsibility of the authors only and do not represent the official policy or position of the USDOT/RITA, or any State or other entity."

Overview of Presentation

- Problem Statement
- Relevance to transportation
- Technology and Data Collection
- Analysis method
- Results and Validation
- Conclusion and future work

Project: Problem Statement

Can InSAR technology be used to detect and monitor ground features of interest to the transportation community?

In particular, can leading edge satellite-based interferometric techniques provide a proactive rather than reactive approach to potentially hazardous phenomena such as **sinkholes**, landslides and bridge displacement?

(InSAR: interferometric synthetic aperture radar)

Slide 4 8/6/2013

Relevance to Transportation

- Increased Safety:
 - Increase safety of the traveling public and reduce the liability exposure to a DOT
- Reduced inconvenience for public:
 - Reduce delays associated with highway closure
- Reduced Costs (VDOT):
 - Emergency costs:
 - Typically 2 to 5 times higher than standard maintenance
 - High individual costs:
 - Minimum cost per sinkhole: \$25k
 - High aggregate costs:
 - About \$1.2M/year for sinkholes and landslide in central VA

InSAR Technology: Satellite

~7.5 km/s

- Active System
- Not affected by weather

	Epoch (UTC):	06 May 2013 12:40:34
	Eccentricity:	0.0001324
ł	Inclination:	97.8736°
Ż	Perigee height:	621 km
1	Apogee height:	623 km
	Right ascension of ascending node:	312.4119°
	Argument of perigee:	82.6105°
	Revolutions per day:	14.82172081
	Mean anomaly at epoch:	277.5294°
	Orbit number at epoch:	31986

1 31598U 07023A 13126.52817318 .00000300 00000-0 44187-4 0 5702 2 31598 097.8736 312.4119 0001324 082.6105 277.5294 14.82172081319868

~620 km

InSAR Technology: Satellite

Slide 7 8/6/2013

InSAR Technology: Theory

Slide 8 8/6/2013

Differential InSAR

Z. Lu, "InSAR imaging of volcanic deformation over cloud-prone areas - aleutian islands," Photogrammetric Engineering & Remote Sensing, vol. 73, no. 3, pp. 245–257, Mar. 2007.

Slide 9 8/6/2013

InSAR Technology: Products

PSInSAR[™] uses at least 15 images

- only stable radar targets (PS) on the ground are used for measurements
- atmospheric effects removed
 - ➔ measurements have millimeter accuracy
- now have a history of motion

Engineering

InSAR Technology: Products

SqueeSAR™

Slide 11 8/6/2013

InSAR Technology: Products

PSInSAR™

SqueeSAR™

Slide 12 8/6/2013

InSAR Technology: Data sets

Sinkholes

Slide 13 8/6/2013

31.81 31.8 31.79 -50 (geg) 31.78 Longitude -100 31.77 -150 -200 31.76 -250 31.75 -300 31.74 -103.16 -103.15 -103.14 -103.13 -103.12 -103.11 -103.1 Latitude (deg)

Spatiotemporal point cloud dataset (Wink Sinks:D19920603)

InSAR Technology

Advantages:

- Active system
- Large coverage in short time
- Short repeat times
- Very high displacement resolution
- Time series of displacements

Shortcomings:

- Moderate starting ground resolution (3x3m)
- Expensive (COSMO-SkyMed: 3600€/scene)

Slide 14 8/6/2013

Modeling phenomena

- What is the ground deformation?
- How does it evolve in time?
- Link behavior to underlying geophysics

Sinkholes data set

- 93,513 PS+DS points
- 22 Single look complex SAR
- ERS Satellites
- June 1992 to February 1998
- 55km² near Wink, SW Texas

Slide 16 8/6/2013

Profile extraction

Slide 17 8/6/2013

Spatiotemporal model

Evolving Gaussian? $g_t(x) = \alpha_t \exp(-x^2/2\sigma_t^2)$

ENGINEERING

Slide 18 8/6/2013

Spatiotemporal model

Evolving Gaussian! $g(\mathbf{x}, t) = \alpha t \exp[-(\mathbf{x} - \mathbf{x_0})^2/2\sigma^2]$

Feature Tracking: Approach

Slide 20 8/6/2013

Feature Tracking: Theory $g_p(x,t) = \alpha t \exp[-(x - x_0)^2/2\sigma^2]$

Relative residual:

1. Rewrite model in implicit form

$$T(\boldsymbol{x},\boldsymbol{p})=0$$

2. Discretize and limit the parameter space $p = [x_0, \alpha, \sigma]$

 $p_{min} \le p \le p_{max}$ with step: Δp

- 3. Define a residual matrix r(p) with one element corresponding to each point p in the parameter space
- 4. For each point p in the parameter space generate the corresponding template $g_p(x_i, t)$ and define and influence region R(p)
- 5. For each data point x_i within R(p) evaluate the relative residual

$$u(\boldsymbol{x_i}, t) = \min\left(\frac{\left|d(\boldsymbol{x_i}, t) - g_p(\boldsymbol{x_i}, t)\right|}{\max\left(\left|d(\boldsymbol{x_i}, t)\right|, \left|g_p(\boldsymbol{x_i}, t)\right|\right)}, 1\right)$$

6. Average results within $R(\mathbf{p}) \xrightarrow{s.t.mean} r(\mathbf{p})$

A. Vaccari, et al. "Detection of geophysical features in InSAR point cloud data sets using spatiotemporal models," *International Journal of Remote Sensing*

Slide 21 8/6/2013

Validation: Sinkholes data set

- 93,513 PS+DS points
- 22 Single look complex SAR
- June 1992 to February 1998
- ERS Satellites
- 55km² near Wink, SW Texas

ENGINEERING

- 166,348 PS + 129,773 DS
- 32 Single look complex SAR
- August 2011 to October 2012
- COSMO-SkyMed Satellites
- 40x40km² Augusta County, VA
- USDOT RITARS-11-H-UVA

Slide 23 8/6/2013

Slide 24 8/6/2013

Slide 25 8/6/2013

Credit: Brian Bruckno, Ed Hoppe, VDOT, VCTIR

Categories	Infrastructure	Geomorphology
Absolute (A)	Cracks, settlement	Recent non-vegetated scarps
Strong (S)	Distortions or cracks	Overgrown scarps
Weak (W)	Repairs or cracks	Geomorphology indicates activity
Possible (P)	Near existing active region	In correct terrain, presence of pinnacles
None (N)	No or negative confirmation	No or negative confirmation

	Risk	Evaluated	А	S	W	Р	Ν	
•	Severe	7	4 (57%)	2 (29%)	-	-	1 (14%)	
•	Moderate	15	8 (54%)	2 (13%)	2 (13%)	1 (7%)	2 (13%)	
•	Slight	10	5 (50%)	4 (40%)	-	1 (10%)	-	
	Total	32	17 (53%)	8 (25%)	2(6%)	2(6%)	3 (10%)	
25 (78%)								

Slide 26 8/6/2013

Extension to different models

- Extensible method
- Feature tracking
 - Spatio-temporal model
 - Model parameters
- Risk assessment
 - Based on residual map
 - Allow inclusion of external knowledge

Field Validation: Vesuvius Sinkhole Credit: Brian Bruckno, Ed Hoppe, VDOT, VCTIR

Slide 28 8/6/2013

Field Validation: Vesuvius Sinkhole

Slide 29 8/6/2013

Field Validation: Rock Slopes

Slide 30 8/6/2013

Field Validation: Rock Slopes Confirmed:

-^/////

Slide 31 8/6/2013

Field Validation: Rock Buttress Stability

Field Validation of InSAR Data:

Temporal series of scatterers subset

Slide 32 8/6/2013

Field Validation: Rock Buttress Stability

Field Validation of InSAR Data:

Slide 33 8/6/2013

Field Validation: Bridge on Route 635 over I-81

200 Feet

0

50

100

© TRE Canada 2012

Slide 34 8/6/2013

Field Validation: Bridge on Route 635 over I-81

Slide 35 8/6/2013

Field Validation: Bridge on Route 635 over I-81

Slide 36 8/6/2013

Mobile Devices Deployment

- Proof of concept
- LAMP (Linux, Apache, MySQL, PHP) server
- Real time database query and update
- Google Maps API

Project: Future Work

- Extend tested sinkhole algorithm (e.g. bridge and landslide spatio-temporal models)
- Develop pavement condition index based on temporary scatterers
- Develop Risk mapping algorithm based on existing and learned data

Thank you!

Slide 39 8/6/2013