Monitoring the Transportation Infrastructure with Satellite-Based Interferometric Synthetic Aperture Radar (InSAR)

A. Vaccari, M. Stuecheli, S. T. Acton
Virginia Image and Video Analysis (VIVA)
University of Virginia

B. S. Bruckno
Virginia Department of Transportation

13th Annual Technical Joint Forum
Geohazards Impacting Transportation in Appalachia
Interstate Technical Group on Abandoned Underground Mines
Disclaimer

“The views, opinions, findings and conclusions reflected in this presentation are the responsibility of the authors only and do not represent the official policy or position of the USDOT/RITA, or any State or other entity.”
Overview of Presentation

- Problem Statement
- Relevance to transportation
- Technology and Data Collection
- Analysis method
- Results and Validation
- Conclusion and future work
Project: Problem Statement

Can InSAR technology be used to detect and monitor ground features of interest to the transportation community?

In particular, can leading edge satellite-based interferometric techniques provide a proactive rather than reactive approach to potentially hazardous phenomena such as **sinkholes**, landslides and bridge displacement?

(InSAR: interferometric synthetic aperture radar)
Relevance to Transportation

• Increased Safety:
 – Increase safety of the traveling public and reduce the liability exposure to a DOT

• Reduced inconvenience for public:
 – Reduce delays associated with highway closure

• Reduced Costs (VDOT):
 – Emergency costs:
 • Typically 2 to 5 times higher than standard maintenance
 – High individual costs:
 • Minimum cost per sinkhole: $25k
 – High aggregate costs:
 • About $1.2M/year for sinkholes and landslide in central VA
InSAR Technology: Satellite

- Active System
- Not affected by weather

COSMO-SkyMed1

- Epoch (UTC): 06 May 2013 12:40:34
- Eccentricity: 0.0001324
- Inclination: 97.8736°
- Perigee height: 621 km
- Apogee height: 623 km
- Right ascension of ascending node: 312.4119°
- Argument of perigee: 82.6105°
- Revolutions per day: 14.82172081
- Mean anomaly at epoch: 277.5294°
- Orbit number at epoch: 31986
InSAR Technology: Satellite

SAR Satellites: Past, Present and Future

ERS1 - ERS2
ENVISAT
RADARSAT-1
RADARSAT-2
ALOS-PALSAR
ALOS
TerraSAR-X
Tandem-X
Cosmo Sky-Med Constellation
Cosmo Sky-Med 2
SADCOM 1A
Sentinel-1
RCM Constellation

Slide 7
8/6/2013
InSAR Technology: Theory

\[\Delta R \]

R1

R2
Differential InSAR

InSAR Technology: Products

PSInSAR™ uses at least 15 images

- only stable radar targets (PS) on the ground are used for measurements
- atmospheric effects removed
 ➔ measurements have millimeter accuracy
- now have a history of motion
InSAR Technology: Products

SqueeSAR™

PS

DS

No data

Received signal

Signal

Range

DS

PS
InSAR Technology: Products

PSInSAR™ SqueeSAR™

[Images of PSInSAR™ and SqueeSAR™ product examples]
InSAR Technology: Data sets

Sinkholes
InSAR Technology

Advantages:
- Active system
- Large coverage in short time
- Short repeat times
- Very high displacement resolution
- Time series of displacements

Shortcomings:
- Moderate starting ground resolution (3x3m)
- Expensive (COSMO-SkyMed: 3600€/scene)
Modeling phenomena

- What is the ground deformation?
- How does it evolve in time?
- Link behavior to underlying geophysics
Sinkholes data set

- 93,513 PS+DS points
- 22 Single look complex SAR
- ERS Satellites
- June 1992 to February 1998
- 55km² near Wink, SW Texas
Profile extraction
Spatiotemporal model

Evolving Gaussian?

\[g_t(x) = \alpha_t \exp\left(-x^2/2\sigma_t^2\right) \]
Spatiotemporal model

Evolving Gaussian! \[g(x, t) = \alpha t \exp\left[-\frac{(x - x_0)^2}{2\sigma^2} \right] \]
Feature Tracking: Approach

- Spatio-Temporal Model
- Parameter Space
- InSAR Stack
- Residual Map
Feature Tracking: Theory

\[g_p(x, t) = \alpha \exp \left[-\frac{(x - x_0)^2}{2\sigma^2} \right] \]

Relative residual:

1. Rewrite model in implicit form
 \[T(x, p) = 0 \]

2. Discretize and limit the parameter space \(p = [x_0, \alpha, \sigma] \)
 \[p_{min} \leq p \leq p_{max} \quad \text{with step: } \Delta p \]

3. Define a residual matrix \(r(p) \) with one element corresponding to each point \(p \) in the parameter space

4. For each point \(p \) in the parameter space generate the corresponding template \(g_p(x_i, t) \) and define and influence region \(R(p) \)

5. For each data point \(x_i \) within \(R(p) \) evaluate the relative residual

\[\mu(x_i, t) = \min \left(\frac{|d(x_i, t) - g_p(x_i, t)|}{\max(|d(x_i, t)|, |g_p(x_i, t)|)}, 1 \right) \]

6. Average results within \(R(p) \rightarrow r(p) \)

Validation: Sinkholes data set

- 93,513 PS+DS points
- 22 Single look complex SAR
- June 1992 to February 1998
- ERS Satellites
- 55km² near Wink, SW Texas
Central Virginia data set

- 166,348 PS + 129,773 DS
- 32 Single look complex SAR
- August 2011 to October 2012
- COSMO-SkyMed Satellites
- 40x40km² Augusta County, VA
- USDOT RITARS-11-H-UVA
Central Virginia data set
Central Virginia data set

Residual: $r(p) = r(x_0, y_0, \alpha, \sigma)$

Risk: $\rho(p) = [1 - r(p)]\exp\left(\frac{1}{\alpha_p}\right)$

- $\rho(p) \geq 0.475$
- $0.40 \leq \rho(p) < 0.475$
- $0.35 \leq \rho(p) < 0.40$
Central Virginia data set

Credit: Brian Bruckno, Ed Hoppe, VDOT, VCTIR

<table>
<thead>
<tr>
<th>Categories</th>
<th>Infrastructure</th>
<th>Geomorphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute (A)</td>
<td>Cracks, settlement</td>
<td>Recent non-vegetated scarps</td>
</tr>
<tr>
<td>Strong (S)</td>
<td>Distortions or cracks</td>
<td>Overgrown scarps</td>
</tr>
<tr>
<td>Weak (W)</td>
<td>Repairs or cracks</td>
<td>Geomorphology indicates activity</td>
</tr>
<tr>
<td>Possible (P)</td>
<td>Near existing active region</td>
<td>In correct terrain, presence of pinnacles</td>
</tr>
<tr>
<td>None (N)</td>
<td>No or negative confirmation</td>
<td>No or negative confirmation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk</th>
<th>Evaluated</th>
<th>A</th>
<th>S</th>
<th>W</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>7</td>
<td>4 (57%)</td>
<td>2 (29%)</td>
<td>-</td>
<td>-</td>
<td>1 (14%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>15</td>
<td>8 (54%)</td>
<td>2 (13%)</td>
<td>2 (13%)</td>
<td>1 (7%)</td>
<td>2 (13%)</td>
</tr>
<tr>
<td>Slight</td>
<td>10</td>
<td>5 (50%)</td>
<td>4 (40%)</td>
<td>-</td>
<td>1 (10%)</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>17 (53%)</td>
<td>8 (25%)</td>
<td>2 (6%)</td>
<td>2 (6%)</td>
<td>3 (10%)</td>
</tr>
</tbody>
</table>

25 (78%)
Extension to different models

- Extensible method
- Feature tracking
 - Spatio-temporal model
 - Model parameters
- Risk assessment
 - Based on residual map
 - Allow inclusion of external knowledge
Field Validation: Vesuvius Sinkhole
Credit: Brian Bruckno, Ed Hoppe, VDOT, VCTIR
Field Validation: Vesuvius Sinkhole
Field Validation: Rock Slopes

Analyze:

- Low-angle Wedge Failures
- Broad Failure Mode
- Field Conditions

ESRI ArcMap 10.0
Field Validation: Rock Slopes

Confirmed:

VEL: -1.75mm/yr
Field Validation: Rock Buttress Stability

Field Validation of InSAR Data:

Temporal series of scatterers subset
Field Validation: Rock Buttress Stability

Field Validation of InSAR Data:
Field Validation: Bridge on Route 635 over I-81

Mapping of the bridge with points of interest labeled as TS1 and TS2. The map shows a gradient of surface displacement rate with values ranging from -10 to 10 mm/year. The map projection is StatePlane Virginia North FIPS 4501 (Feet) / NAD1983. Imagery courtesy of the Commonwealth of Virginia, © TRE Canada 2012.
Field Validation: Bridge on Route 635 over I-81
Field Validation: Bridge on Route 635 over I-81
Mobile Devices Deployment

- Proof of concept
- LAMP (Linux, Apache, MySQL, PHP) server
- Real time database query and update
- Google Maps API
Project: Future Work

• Extend tested sinkhole algorithm (e.g. bridge and landslide spatio-temporal models)

• Develop pavement condition index based on temporary scatterers

• Develop Risk mapping algorithm based on existing and learned data
Thank you!