Fiber Reinforced Concrete to Mitigate Hazards of Tunnel Linings

Presented by: Kaushlendra Das
Maccaferri, Inc.
Concrete – Strong in compression but **Weak in..**

Introduction

- **Plastic shrinkage**
- **Explosive spalling**
- **Bending**
- **Shear / splitting**

Performance improvements by fibers

- **Micro-synthetic fibers:**
 - Material enhancement
- **Steel fibers:**
 - Structural enhancement
Fiber Reinforced Concrete (FRC) containing fibrous material which increase its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented.

Types of Fibers:

- Steel Fibers
- Synthetic Fibers
Introduction (Cont...)

Fibers are usually used in concrete;

1. To **inhibit** cracking due to plastic shrinkage and drying shrinkage, to **improve toughness** and or to increase shear of the concrete.

2. **Reduce the permeability** of the concrete and thus reduce bleeding of water.

Fibers are not to be seen as replacement for rebars.
Advantages Of Fiber

1. Polypropylene and Nylon Fibers
 - Improve mix cohesion and pump ability over long distances
 - Improves freeze-thaw resistance
 - Improves resistance to explosive spalling in case of a severe fire:
 1. Internationally proven to limit the occurrence of explosive spalling
 2. Recognized by designers and fire fighting authorities to protect the integrity of the concrete structure
 3. Mitigates damage and loss and Protect lives
 - Increase resistance to plastic shrinkage during curing

Introduction (Cont...)
Advantages Of Fiber (Contd..)

2. Steel Fibers;

- Improve structural strength
- Reduce steel reinforcement requirements
- Reduce crack widths by holding it tightly, thus improve durability
- Improve impact and abrasion resistance
- Improve freeze-thaw resistance
Steel Fiber Reinforced Concrete (SFRC)

Toughness and post-cracking behavior.

- After first cracking of concrete, steel fibers sew the cracks and give an extra strength. This deformation capacity provides ductility (toughness).
- The addition of fibers substantially improves the concrete characteristics transforming its behavior from elastic-fragile (Brittle) to elastic-plastic (ductile), making it suitable for structural applications.
Fiber Reinforcement of Concrete

We can easily reach hardening behavior

From Brittle to Ductile !!!!!

Figure 1. Tensile Load versus Deformation for Plain and Fiber Reinforced Concrete.
Steel Fiber Reinforced concrete behavior

Hardening

Plastic

Softening

CTOD [mm]

STRESS

% feq

>100% Hardening

=100% Plastic

<100% Softening

f_{If}

U_1

U_2

CTOD_0

0.3 0.6 1.8

>100% Hardening

=100% Plastic

<100% Softening
Flow Rates Of Water Through Separation Cracks

SFRC shows up to 95% reduced flow rate coefficients
Steel Fiber Reinforced Concrete (SFRC)

For design and the structural point of view the most important parameters to define the fibers’ performance are:

1. Residual Strength Factor
2. Types and shape of the elements
3. Fiber length (L), diameter (D) and the Aspect ratio (L/D)
4. Strength and quality of the base material
5. Number of fibers per dosages weight (fiber count per weight)
Fire Resistance

Concrete with Traditional Rebar

Fiber Reinforced Concrete
Test Results

Surface immediately after firing;

Plain Concrete

2kg/m3 of PP Fiber RC
Test Results

Traditional RC

3kg/m3 of PP Fiber RC
Microscopic view of a void, created by a degraded micro-PP fibers
Choice of PP Fibers

Primary requirement to reduce explosive spalling;

1. Fineness of the fibers
 - High number of individual fibers per unit weight
 - Large specific surface area per unit weight
 - Diameter of PP fiber < 20 microns
Application of Micro Synthetic Fibers for Resistance to Explosive Spalling In Fires
Tunnel Fires

- Great Belt Tunnel (Denmark, 1994)
- Channel Tunnel (UK-France, 1996)
- Mont Blanc (Italy-France, 1999)
- Kaprun (Austria, 2000)
- Gotthard (Italy-Switzerland, 2001)
- Baltimore Rail Tunnel (2002)
Explosive Spalling

- Most **DANGEROUS** form of spalling occurs during first 20-30 minutes when rapid heat rise is encountered
- Characterized by forcible separation of pieces of concrete and accompanied by a loud bang
PP Fiber Degradation

• How PP Fiber Helps Against Fire?
• 160°C ➔ Melting Temperature
 ➔ Creation of Voids
• Gases given off are burnt away by the fire or will dissipate into the atmosphere
• Toxic gas given off by the fire is so small that meets Health and Safety Regulations
Behavior of Polypropylene Fiber Reinforced Concrete in Fire
Problems of Conventionally Reinforced Concrete

Spalling or bursting of concrete cover at vulnerable edges and corners
Precast segmental linings

Tunnel Linings
Advantages of SFRC in Precast Tunnel Segments

1. SFRC is a **ductile and robust** material
2. Reduction of **crack widths**
3. High resistance against impacts during handling and placing of the segments
4. Reduced risk of unexpected collapse or failure of the lining
5. Improved precast **production efficiency** by partial or total elimination of ordinary steel reinforcement
Why using Fiber Reinforcement for Linings?

- Less steel \Rightarrow lower carbon footprint
- Less production time \Rightarrow higher productivity
- Lower production costs \Rightarrow less labor (i.e. less human errors)
- Ease of accuracy of reinforcement placement
- Higher robustness due to fiber reinforced cover concrete
- High crack resistance, better crack control (i.e. better durability)
CASE STUDY
Hobson Bay Tunnel Lining, New Zealand

Geometry of the Tunnel and the segments
• Tunnel Length 9843 ft. (3.0 km)
• Internal diameter 12 ft. (3.70 m)
• Wall thickness 9.84 in. (250 mm)
• Ring setup 4+2
• Segment slenderness 8.3
• Ring width 3.9 ft. (1.20 M)

• Conventional reinforcement: 184 kg/m³ (tender design)
• Alternatively chosen SFRC solution: 40 kg/m³ of Wirand FF3
Production Highlights

Quality Assessment:
- 15,000 segments produced
- 7 segments rejected as defective (0.05%)
- 6 damaged during installation (0.04%)

Total Reject Rate < 0.1%
Production Highlights

Cost Assessment:

- 50% time saving on segment production
- 10% cost saving on total project cost (NZ$118.6 million)
Preparation of Specimens

Cube - Compressive strength
- 3 cubes @ 1 day
- 6 cubes @ 7 days
- 12 cubes @ 28 days
- 6 cylinders @ 7 days
- 12 cylinders @ 28 days
- 12 beams @ 28 days

Cylinder - Tensile splitting strength

Beam - Flexural Strength
Higher Strength ➔ Higher Brittlenessness
Concrete Mix Design is Very Important to Create a Well Performing Composite
LOAD vs CMOD (Graphs)

Identical mix design, just different grade and quality of aggregates
General Dosage and Typical Lining Thickness by Energy Absorption Test

| Fiber Type | ASTM C1550 = 225 J | | | | | |ASTM C1550 = 350 J | | | | | |ASTM C1550 = 450 J | | | | | |
|------------|---------------------|----|---------------------|----|---------------------|----|
| | Dosage kg/m³ (lb/y³) | | | Dosage kg/m³ (lb/y³) | | | Dosage kg/m³ (lb/y³) | | |
| Wirand® FS1 | 25 (44) | | | 30 (50) | | | 35 (60) | | |
| Wirand® FS3N | 35 (60) | | | 40 (67) | | | 45 (75) | | |
| Wirand® FS4N | 30 (50) | | | 35 (60) | | | 40 (67) | | |
| Wirand® FS7 | **25 (44)** | | | **30 (50)** | | | **35 (60)** | | |

Notes: The predominant aggregate recommended for the concrete mix design is 1/2". The values consider the experience with concretes from 4000 psi to 5000 psi of compression resistance.
PRECAST TUNNEL SEGMENTS

Usual dosage and thickness by application

<table>
<thead>
<tr>
<th>Fiber Type</th>
<th>Mix RR + SFRC</th>
<th>SFRC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dosage</td>
<td>Thickness</td>
</tr>
<tr>
<td></td>
<td>kg/m³ (lb/y³)</td>
<td>mm (in)</td>
</tr>
<tr>
<td>Wirand® FF1</td>
<td>25-35 (44-60)</td>
<td>250-400 (10-16)</td>
</tr>
<tr>
<td>Wirand® FF3</td>
<td>20-30 (34-50)</td>
<td>250-400 (10-16)</td>
</tr>
</tbody>
</table>

Notes: The predominant aggregate recommended for the concrete mix design is 1”. The values consider the experience with concretes from 4000 psi to 6000 psi of compression resistance. RR=Rebar Reinforcement SRFC=Steel Fiber Reinforced Concrete
Case Study:
Blue Plains – DC Clean River Project
Blue Plains Tunnels

- The DC Water Clean Rivers Project (Combined Sewer Overflow Control Program) is an activity of DC Water’s Long Term Control Plan (LTCP).
- The LTCP is required by the US Environmental Protection Agency to reduce pollution from combined sewer overflows (CSOs) to Rock Creek and the Anacostia and Potomac rivers.
- In achieving this goal, DC Water will implement a system of tunnels, sewers and other division structures to control and capture throughout the city.
 - 13 miles tunnel system for the Anacostia is divided into 3 segments
 - The TBM is making its way along the first segment, more than four miles along the Potomac and the Anacostia rivers
 - At a depth of approximately 100 feet.
Technical Characteristics

The Scope of the Blue Plains Project Materials:

- Precast Segments are 14” thick
- Tunnel Outside Diameter 25’ 4”
- Tunnel Inside Diameter 23’ 0”
- Tunnel Segments are fully reinforced with Wirand® FF3 HS
Location Map Blue Plains Tunnel
Precast Segmental Lining
THANK YOU FOR YOUR ATTENTION!!!!!

KAUSHLENDRA DAS

Engineering a better solution