Assessing Transportation Infrastructure: Geotechnical Assets, Elements and Features

Benjamin S. Rivers, P.E.
Geotechnical Engineer
FHWA

2015 Geohazards Forum
Topics

Examples of recent failures

Map-21 and Performance Management

Geotechnical Taxonomy

Risk-Based Asset Management Approach

Example Foundation Assessment

Conclusions and Challenges
I-10 Bridge CA, July 2015
I-43 Leo Frigo Bridge, Green Bay, Sept. 2013
I-495 Delaware Christiana Bridge, June 1014
MAP-21 – Transportation Bill July 2012

- Establishes system performance requirements
- State Highway Agencies to develop asset management plan toward achieving national highway performance goals
 - Risk-based plan to improve and preserve assets and performance of the system
 - Must include pavement and bridges
 - Encourages inclusion of all assets within the corridor right-of-way
MAP-21 National Performance Goals

1. Safety
2. Infrastructure Conditions: State of Good Repair
3. Congestion Reduction
4. System Reliability - improve efficiency
5. Freight Movement and Economic Vitality
6. Environmental Sustainability
7. Reduced Project Delivery Delays
Performance Management

- Risk Management
- Geohazards
- Asset Management

Highway System Performance
2016 TRB Paper (Submitted)

Taxonomy for Geotechnical Assets, Elements, and Features

Scott A. Anderson, FHWA
Vernon R. Schaefer, Iowa State Univ.
Silas C. Nichols, FHWA

• Precise definitions of nomenclature to facilitate communication and advancement of geotechnical and transportation asset management.
Proposed Geotechnical Asset Taxonomy

The adjective “Geotechnical” means the asset is comprised of earth, pertains to earth, or its performance is achieved through earth interaction with a structure or inclusion.

Inclusions are any and all non-earth modifications: pipes, anchors, grids, fabrics, grouts, etc.

Predominant distinction in how feature is managed. Assets with inclusions are “modified”.

Established management systems for other structures that have (or could have) geotechnical elements.

High slopes, shorelines, and structures typically owned by others outside the ROW that are sources of risk because they can impact performance

Investigation and test results, lab and field equipment, key personnel
Taxonomy (cont’d) – Corridor and/or GAM Section

Corridor and/or GAM Section

- Inside-ROW Asset
 - Independent Geotechnical Asset
 - Geotechnical Element
 - Slopes
 - Water bodies
 - Structures
 - Bridge Asset
 - Tunnel Asset
 - Pavement Asset
 - Culvert Asset

- Outside-ROW Feature
 - (See Next Slide)
Taxonomy (cont’d) – Independent Geotechnical Asset

- Independent Geotechnical Asset
 - Slope
 - Rock
 - Soil
 - Modified
 - Embankment
 - Rock
 - Soil
 - Modified
 - Subgrade
 - Rock
 - Soil
 - Modified
 - Earth Retaining Structure
 - Stabilized Earth
 - Steel or Concrete
Points to Consider

Many assets, elements and features affect system performance.

Standards change over time; existing infrastructure may not reflect certain considerations, so this must be captured within the risk-based asset management.

Absent a structured format, a geotechnical engineer might think of a failure event as a rock hitting a travel lane, a vehicle or injuring a person (all different), a failure of an embankment slope, or the structural collapse of a foundation but these events are not likely to be directly tied to stated performance objectives.
2016 TRB Paper (Submitted)

Communicating Multi-Objective Risk – A New Geotechnical Need for Transportation
Scott A. Anderson, FHWA

- Risk Cube concept – Visualization
- To facilitate the identification and communication of all significant risks, and to coordinate the best risk-based decisions.
Example – For Embankments
Risk Categories for Embankments – Considering Physical Failure and Natural Hazards

- Risk to safety from natural hazards acting on embankment
- Risk to infrastructure condition from natural hazards acting on embankment
- Risk to congestion from natural hazards acting on embankment
- Risk to environment from natural hazards acting on embankment
- Risk to safety from physical failure acting on embankment
- Risk to infrastructure condition from physical failure acting on embankment
- Risk to congestion from physical failure acting on embankment
- Risk to environment from physical failure acting on embankment
Tie to Geotechnical Performance

Relate System Performance Risks to Geotechnical Performance Criteria

Ideally, design and performance standards would match performance expectations

Need: Relate to reliability of design (or improvement) and probability that geotechnical performance is not met (geotechnical failure) – In LRFD, this would mean for all limit states – Strength, Service, Extreme Event…
Consider a new bridge superstructure reusing an existing foundation system...

Complete Reuse

Partial Reuse/Retrofit

From Jalinoos, 2015
Example: Willow Valley Bridge, Abutment 1

From Jalinoos, 2015

Image Source: Colog, Inc.
Example: Willow Valley Bridge, Abutment 1
From Jalinoos, 2015
Image Source: C-Thru Ground
Conclusions and Challenges

Many assets, elements and features affect system performance.

Standards change over time; risked-based asset management necessary.

Must relate geotechnical performance criteria to system performance objectives

Need: A unified reliability-based (probabilistic) geotechnical design/performance standard
Last Week Tonight with Jon Oliver: Infrastructure
Questions?