Rock Slope Improvement Project: Kinematic Analysis, Construction Challenges, and Value Engineering Proposals

Martin J. Woodard, PhD PG PE
GeoStabilization International
marty@gsi.us
ROCK SLIDE
SAN FRANCISCO
Public Property

Private Property
Note: Locations shown are approximate. Engineer to lay out precise rock anchor locations in the field.
Proposal Issues
• Overall Costs
• Available Funds
• Alternative Needed
Nearly 21,000 SQ FT of mesh
ROCK ANCHOR AT GROUND SURFACE DETAIL

SCALE: N.T.S.

- Spider Mesh
- Rock Anchor Beveled Washer and Hex Nut
- Mesh Spike Plate and Hex Nut
- Paint All Exposed Bar With Epoxy Coating
- Min. 12"x12"x1" Galvanized A36 Steel Anchor Plate
- TECCO Mesh

(E) Ground Surface
ROCK ANCHOR SCHEDULE

(12 Wire Mesh Support Anchors, 115 Rock Anchors)

<table>
<thead>
<tr>
<th>Rock Anchor No.</th>
<th>Approximate Elevation (ft)</th>
<th>Dip Angle from Horizontal (°)</th>
<th>Orientation</th>
<th>Min. Unbonded Length (ft)</th>
<th>Min. Bonded Length (ft)</th>
<th>Test Load (kips)</th>
<th>Lock-Off Load (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM-1</td>
<td>154</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-2</td>
<td>152</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-3</td>
<td>150</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-4</td>
<td>137</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-5</td>
<td>134</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-6</td>
<td>128</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-7</td>
<td>124</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-8</td>
<td>122</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-9</td>
<td>122</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-10</td>
<td>126</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-11</td>
<td>128</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>WM-12</td>
<td>130</td>
<td>45</td>
<td>N90W</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>RA-1A</td>
<td>150</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1B</td>
<td>142</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1C</td>
<td>134</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1D</td>
<td>126</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1E</td>
<td>118</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1F</td>
<td>110</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1G</td>
<td>102</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1H</td>
<td>94</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1J</td>
<td>86</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-1K</td>
<td>78</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-2A</td>
<td>146</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-2B</td>
<td>138</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-2C</td>
<td>130</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-2D</td>
<td>122</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-2E</td>
<td>114</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-2F</td>
<td>106</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-2G</td>
<td>98</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
<tr>
<td>RA-2H</td>
<td>90</td>
<td>10</td>
<td>N90W</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>50</td>
</tr>
</tbody>
</table>
• GSI Analysis
• Same Conditions
• Same Back Analysis
• Required 16 kips
• Report states 32 kips
• Contract document reports 50 kip load
Uncoated Corrosion Resistant Steel Bar

- Soil Nails
- Tie-backs & Tie-downs
- Micropiles
- Rock Anchors
- Guy Anchors
- Wind Turbine Foundation Bolts
- Marine Bulkhead Wall Tie-Rods

Stages of Corrosion Damage Over Time

MMFX steel extends the operational service life and need for repair beyond 100 years by delaying corrosion initiation with a higher chloride threshold and slowing propagation due to a lower corrosion rate, making MMFX steel the most economical for all applications.
Post-Tensioned Rock Anchors

• **Industry Accepted Facts**
 - Increases resisting forces
 - Decrease driving forces
 - Use peak strength for design

• **Disadvantages**
 - More Expensive
 - Longer installation time
 - Loss of tension in bar
 - Potentially worsens weak and fractured rock
Rock Dowels (passive elements)

• Industry Accepted Facts
 – Increases resisting forces
 – Use residual strength for design

• Comparisons
 – Less Expensive
 • Single Installation process
 – Can be used in highly fractured and weak rocks
 – Plates and nuts are unnecessary
Results of Value Engineering

• No disagreement with analysis
• Length of time for re-permitting hindered acceptance
• Had to remain with permitted design
• Forced reduction in area of remediation to account for cost differences
Approximately 70 CY
Conclusions

- Proposals for original design were over budget
- Value engineering can be a fiscal and adequate (or improved) alternative
- Project Scope had to be reduced to stay within budget
- Field conditions can warrant fiscally responsible design changes
Thank you

Martin J. Woodard, PhD PG PE
GeoStabilization International
marty@gsi.us