Rock Slope Stability of the Smart Road
Rock Cut in Blacksburg, Virginia

Robin E. Reed, PG
August 16, 2017
Smart Road Proposed

- **Test Bed**
 - 1.7 miles
 - Complex Geologic Setting

- **Vertical Rock Cut**
Planning & Design

 - Limited outcrop exposure
 - Rockslides vs. rock falls
 - Vertical slopes not best in folded and faulted rock
Smart Road Goes to Construction

Construction
- June 1998
 - Rock Slides
 - Oozing
 - Rock Falls
 - Delays, stop work
Smart Road – Field Mapping

- July 1998
- Detailed Mapping
 - Concurrent with construction
 - Windows
 - Other significant areas
 - ID, Group and Prioritize
Smart Road – Discontinuities

- Rock Structure/Discontinuities
 - Orientation
- Bedding
- Joints/Faults
- Characteristics
 - Lithology
 - Continuity
 - Infilling
 - Water
 - Roughness
- Samples
 - Shear testing
 - 34° vs 19°
Smart Road – Kinematic Assessment
RockPack II

- Kinematics
 - Geometry
 - Potential for motion only
 - Mass and force not considered

- Stereonets

- Discontinuities
 - Plot as clusters
 - Limiting equilibrium analysis
 - Friction Angle
 - Daylight
Smart Road – Kinematic Assessment
South/Right Slope

- **90 Degree Slope**
 - Planar Failures
 - Large, steeply dipping joints

- **60 Degree Slope**
 - Planar failures
 - Significantly reduced
Smart Road – Kinematic Assessment
South/Right Slope

- 90 Degree Slope
 - Wedge Failures
 - Bedding
 - Large Joints

- 60 Degree Slope
 - Wedge Failures not eliminated
Smart Road – Kinematic Assessment
North/Left Slope

- 90 Degree Slope
 - Planar Failures
 - Large, steeply dipping joints
- 60 Degree Slope
 - Significantly reduced
Smart Road – Kinematic Assessment
North/Left Slope

- 90 Degree Slope
 - Planar Failures
 - Large, steeply dipping joints

- 60 Degree Slope
 - Slightly reduced potential
Smart Road – Initial Study Results

- Vertical slopes will not be safe
 - Subject to large scale falls and slides
- Reduce slope angle to 60 degrees
- Implement monitoring/protective measures
Smart Road – Problematic Areas

- ID problem areas
 - Safety Factor Calculations
 - Some as low as .86/1.3
 - One third of planned depth
 - Significant potential for continued problems
- October 1998
 - Delayed for redesign and construction
Smart Road – Reevaluation

- Design Change Proposed
 - 1.5 H : 1.0 V (34 degrees)
- New Shear Strength Testing
 - Powder-coated bedding planes, zeolite
 - Friction angle of 28 degrees, c=0
- October 1998
 - Delayed for redesign and construction
Smart Road – Redesign
South/Right Slope

- 34 degree Slope
- Planar virtually eliminated
Smart Road – Redesign
South/Right Slope

- 34 Degree Slope
- Pesky wedgies
Smart Road – Reevaluation
North/Left Slope

- 34 Degree Slope
 - Planar Failures
 - Virtually eliminated
Smart Road – Kinematic Assessment
North/Left Slope

- 34 Degree Slope
 - Wedge Failures
 - Virtually eliminated

Previously identified discontinuity intersections no longer lie within the critical zone.

Structure Key
- Bedding
- Small Joints
- Large Joints
- Sealed Joints
- Foliations
- Faults

MARKLAND TEST PLOT: c:\rkpk2-04\data\a1830714.DAT
Friction Angle = 20 degrees
Slope dip direction = 210 degrees, Dip = 34 degrees
Number of Stations = 38
Smart Road – Final Recommendations

- **Left Slope**
 - 60 Degrees: monitoring, protective measures
 - Less ROW acquisition, less excavation

- **Right Slope**
 - Would need to be dealt with regardless

- **Final Slope**
 - VDOT announces 30 - 40 degree slopes
 - $2.7 million
Valley and Ridge Province
- Structurally complex, folded and faulted - discontinuities
- Steep to vertical rock cuts dangerous without protective measures

Pre-construction
- Understand regional and site-specific geology
- Valuable information from pre-construction mapping, even if limited

During Construction
- Verify pre-construction assessment(s)
- Changed conditions can be recognized early