ExeRcise is Medicine® On Campus

Marshall University

Jared Bradley

Heather Tolnay

What is EIM®

- Was cosponsored by the American Medical Association(AMA) and American College of Sports Medicine(ACSM) in 2007
- Has spread to over 40 countries
- Has the vision of spreading research and clinical based evidence resources to everyone.

The Longterm Vision of EIM®

- Have health care providers assess patient's level of PA
- Determine if the patient is meeting the Physical Activity Guidelines for Americans
- Provide patients with counseling to reach the guidelines
- Refer the patient to either health care or communitybased resources for further guidance

The Current Goals of EIM®

- Embed the physical activity vital sign (PAVS) into electronic medical records (EMRs)
- Develop a national network of evidence-based PA programs and resources
- Provide a clinical decision support system linking clinical and community, so that HCPs can offer behavioral PA counseling and refer patients to fulfill their PA "prescription" in the community

2020 GOLD CAMPUS

This certificate is presented to

Marshall University

In recognition of its commitment to create a culture of wellness on campus and establish physical activity as a vital sign, linking health care and fitness professionals to provide a referral system for exercise prescription

Robert E. Sallis, M.D., FACSM Chair, Exercise is Medicine® Advisory Board

Rabert fallis

Renee Jeffreys Heil, Ph.D., RCEP, EIM Chair, Exercise is Medicine® On Campus Committee

EIM® On Campus

- Making movement a part of the daily campus culture
- Assessing physical activity at every student health visit
- Providing students with the tools necessary to strengthen healthy PA habits that can last a lifetime
- Connecting university health care providers and fitness specialists to provide a referral system.

Importance

- The current literature
 - Declining Physical Activity Levels
 - More Sedentary Behaviors
 - Prevalence of Metabolic Conditions

EIM® at Marshall Fall 2019

- Campus wide walking measurements
- Distance

Goals of On Campus Walking Measurements

- Increase awareness of PA
- Increase levels of PA
- Provide distances to track PA
- Increase the accessibility of campus for PA

Methods

- Survey wheel
- Mean participants steps

Participants

- Marshall University Exercise Science
- Marshall University Students
- Marshall University Staff
- Community Engagement

WE ARE... MARSHALL.

Results

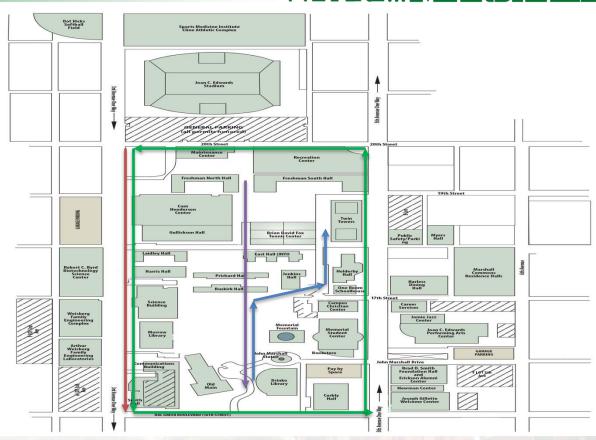
Distance: 1414 Feet

Miles: 0.27Steps: 650

Distance: 2563 Feet

Miles: 0.49

- Steps: 1095


Distance: 6826 Feet

Miles: 1.29

- Steps: 2923

Distance: 1880 Feet

Miles: 0.36Steps: 777

Results

Distance: 778 Feet

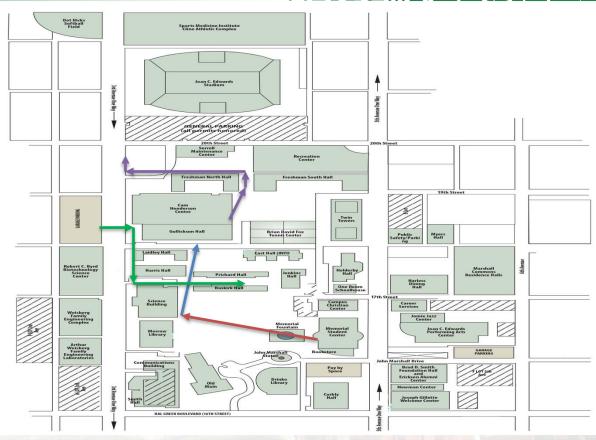
Miles: 0.15Steps: 392

Distance: 734 Feet

Miles: 0.14

- Steps: 378

Distance: 1043 Feet


Miles: 0.20

- Steps: 527

Distance: 1215 Feet

- Miles: 0.23

- Steps: 549

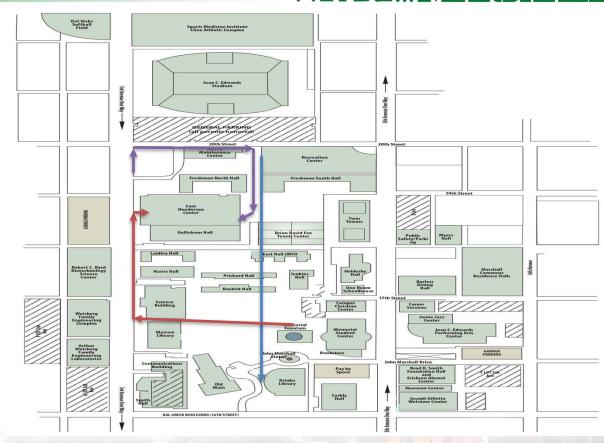
Results

Distance: 1677 Feet

- Miles: 0.32

- Steps: 611

Distance: 1775 Feet


Miles: 0.34

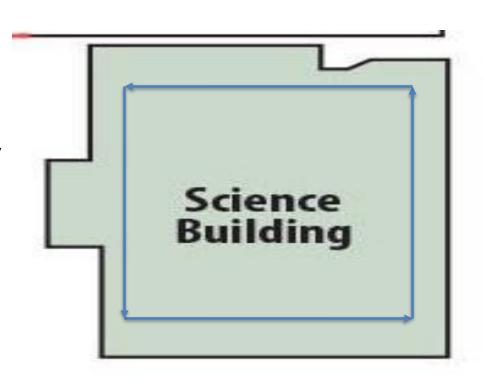
- Steps: 692

Distance: 1465 Feet

Miles: 0.28

- Steps: 606

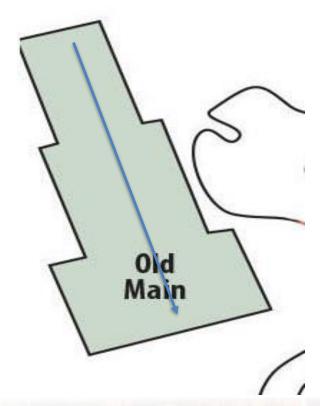
Walk at Work


- Gullickson Hall 1st Floor Hallway (Horseshoe)
 - Distance: 423 Feet
 - Miles: 0.08
 - Steps: 211

Walk at Work

- Science Building Hallway (Loop)
 - Distance: 535 Feet
 - Miles: 0.10
 - Steps: 265

WE ARE... MARSHALL.


Walk at Work

Old Main Hallway

- Distance: 383 Feet

- Miles: 0.07

- Steps:192

Walk at Work

Henderson Center 1st
 Floor Hallway (L-shaped)

- Distance: 571 Feet

- Miles: 0.11

- Steps: 271

Future Implications

- Path markers
- Building plans including distances
- Walk at work events
- Student involvement to increase physical activity levels

ExeR cise is Medicine on Campus

Marshall University

Invites you to our first ever

Sweat-Heart Couples Walk!

February 14th, 2020 Open to Everyone! Free to All!

Come walk with a partner! We encourage walking to break up sitting and increase physical activity levels. Walk on campus or anywhere you can! Use any fitness app to track your steps throughout the day. Email a screenshot of the step count to EIM@Marshall.edu. Cut-off is 10:00p.m. The winner will receive a free Body Composition analysis to determine your body fat %, as well as a Resting Metabolic Rate test so that you know how many calories you burn in a day! Courtesy of Marshall University Exercise Science

department.

Other Projects

Winning Step Count:

31,198 Steps!

That is nearly 15 Miles!

Marshall University **Exercise** Physiology Lab

Future Projects

- Off campus walking measurements
- Health Apps
- Step Counts

References

- De Cocker, et. All. (2010). Associations between sitting time and weight in young adult Australian women. *Preventive Medicine*, 51(5), 361-367.
- Ojo, S. O., et. All. (2019). Breaking barriers: using the behavior change wheel to develop a tailored intervention to overcome workplace inhibitors to breaking up sitting time. *BMC public health*, 19(1), 1126-1126.
- Dunstan, et. All. (2012). Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care, 35(5), 976-983.
- Healy, et. All. (2008). Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care, 31(4), 661-666.
- Altenburg, et. All. (2013). The effect of interrupting prolonged sitting time with short, hourly, moderate-intensity cycling bouts on cardiometabolic risk factors in healthy, young adults. *Journal of Applied Physiology*, 115(12), 1751-1756.
- Exerciseismedicine.org
- Lee, et. All. Physical Activity Series Working, G. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. *Lancet, The, 380*(9838), 219-229. Benatti, et. All. (2015). The Effects of Breaking up Prolonged Sitting Time: A Review of Experimental Studies. *Medicine & Science in Sports & Exercise, 47*(10), 2053-2061.
- Ozemek, et. All. (2019). Global physical activity levels Need for intervention. *Progress in Cardiovascular Diseases*, 62(2), 102-107. Healy, et. All. (2013). Reducing sitting time in office workers: Short-term efficacy of a multicomponent intervention. *Preventive Medicine*, 57(1), 43-48.
- Smith, et. All. (2015). Weekday and weekend patterns of objectively measured sitting, standing, and stepping in a sample of office-based workers: the active buildings study. *BMC public health*, 15(1), 9-9.

Acknowledgements

 We would like to thank the University, the faculty of the Exercise Science Department and all of our students that helped make these projects possible.

 We would also like to thank the REC Center, Student Health Services, and the other collaborative entities that made the EIM® on campus Gold Status possible.

