# The Effects of Powder, Barrel Length & Velocity on Distance Determination

Daniel Botello, B.S.<sup>1</sup>; Dwight Deskins, B.S.<sup>2</sup>; Jessica Copeland, B.S.<sup>2</sup>; Catherine G. Rushton, M.S.F.S.<sup>1</sup>; Pamela Staton, Ph.D.<sup>1</sup>

<sup>1</sup>Marshall University Forensic Science Program, 1401 Forensic Science Dr., Huntington, WV 25701 <sup>2</sup> Kentucky state Police – Eastern Lab, 1550 Wolohan Dr. – Suite 2, Ashland, KY 41102



### Question:

Does a firearms examiner need the gun and specific ammo used in a crime to determine distance of the shooter?

# The Study

357 Magnum revolvers can accommodate for both 38 Special & 357 Magnum

Velocities recorded using chronograph

Target is a plain white cotton fabric affixed to cardstock

Range was varied from 3" to furthest distance that produced a pattern

Powder type was varied at each range to observe patterns at both max and min loads

### Overview

- F The Guns
- Թ The Setup
  - 🔎 Ransom rest
- Reloading
- F Chemical Enhancements
- Թ The Data
- Discussion
- Conclusions

### The Guns



#### Rossi 92 SRC

- 357 Magnum Lever-Action Rifle
- 🐔 20" Barrel Length
- 🥙 5.75 Lbs
- 5.5 Lb Trigger Pull
- In Round Magazine Capacity

### Quick Disassemble



### **Disassemble** Continued



### DA v. SA



# The Setup



### Ransom Rest



# Reloading



# Reloading Cont...





# Chemical Enhancements: MG Test

Modified Griess Test:

Used to measure nitrite residues on a target formed during the burning of smokeless powder.

Simplified Testing Procedures:

- Place desensitized photo paper down glossy side up.
- Place questioned material suspected area face down on top of photo paper.
- Dampen a cheesecloth with 15% Glacial Acetic Acid and place on top of material.
- Use an iron to steam any nitrites from target to photo paper.
- Observe color change.

### Chemical Enhancements: So Rho

#### Sodium Rhodizonate

Used to measure lead particles on the target that are typically produced by the primer charge.

Simplified Testing Procedures:

- Spray Sodium Rhodizonate solution directly onto target and allow to penetrate for 1 minute
  - Results in pink reaction where positive for heavy metals
- Spray buffer solution (pH 2.8) on the target and allow to react.
  - Removes the yellow background color of negative areas
  - Consists of sodium bitrate and tartaric acid

Spray or drop 5% HCl Acid onto positive areas to indicate presence of Pb
Results in purple color change

### Overview

🖉 The Guns

🖉 The Setup

Ransom rest

Reloading

Chemical Enhancements

Թ The Data

Discussion

Conclusions

### Raw Data Summary

### 🕝 5 Firearms

- 🚰 14 unique ammunition types
- 302 patterns produced
- Minimum Bullet Velocity: 622 FPS
- Maximum Bullet Velocity: 2170 FPS
- Shortest Maximum Distance: 12 inches
- Longest Maximum Distance: 48 inches
- Furthest distance target cloth was carried: 133 inches

### Pattern Variation



Clays 38 Special @ 18"

Blue Dot 357 Magnum 18"

### **Clays Series Comparison**

### Clays 3.5 Grains @ 3"









# Visual Comparison

### Remington UMC 125 SJ @ 3"









# Clays Series Comparison

### Clays 3.5 Grains @ 12"









### Maximum Distances



### Blue Dot @ 36"



### Remington 110 JHP @ 48"

### Raw Data 38 Special

| 38 Special Velocity Stats (Feet per second) |                     |                     |                 |                     |  |
|---------------------------------------------|---------------------|---------------------|-----------------|---------------------|--|
|                                             | Minimum<br>Velocity | Maximum<br>Velocity | Velocity Spread | Average<br>Velocity |  |
| All Barrels                                 | 622                 | 1003                | 381             | 796                 |  |
| 2" Barrel                                   | 622                 | 788                 | 166             | 696                 |  |
| 4" Barrel                                   | 676                 | 937                 | 261             | 797                 |  |
| 8 3/8" Barrel                               | 721                 | 1003                | 282             | 882                 |  |

### Raw Data 357 Magnum

| 357 Magnum Velocity Stats (Feet per second) |                     |                     |                 |                     |  |
|---------------------------------------------|---------------------|---------------------|-----------------|---------------------|--|
|                                             | Minimum<br>Velocity | Maximum<br>Velocity | Velocity Spread | Average<br>Velocity |  |
| All Barrels                                 | 1125                | 2170                | 1045            | 1436                |  |
| 2.5" Barrel                                 | 1125                | 1352                | 227             | 1236                |  |
| 4" Barrel                                   | 1210                | 1510                | 300             | 1329                |  |
| 8 3/8" Barrel                               | 1316                | 1710                | 394             | 1477                |  |
| 20" Barrel                                  | 1749                | 2170                | 421             | 1956                |  |

### GSR Visual Patterns: Velocity

Velocity v. Distance



# Pattern v. Barrel Length



### GSR Visual Patterns: Barrel Length

**Barrel Length v. Distance** 



### GSR Visual Patterns: Powders

#### Maximum Distance Representation by Barrel Length

|                                             | 38 Special |           | 357 Magnum    |             |           |           |            |
|---------------------------------------------|------------|-----------|---------------|-------------|-----------|-----------|------------|
|                                             | 2" Barrel  | 4" Barrel | 8 3/8" Barrel | 2.5" Barrel | 4" Barrel | 8" Barrel | 20" Barrel |
| Remington 110<br>JHP 357<br>Magnum          |            |           |               | 48″         | 42"       | 48"       |            |
| Win 110 JHP<br>357 Magnum                   |            |           |               | 30"         | 30"       | 30"       |            |
| Fed 110 JHP<br>357 Magnum                   |            |           |               | 30"         | 24"       | 30"       |            |
| Rem UMC 125<br>JSP 357<br>Magnum            |            |           |               | 48"         | 30"       | 42"       | 36"        |
| Rem UMC 130<br>FMJ 38 Special               | 30"        | 36"       | 42"           |             |           |           |            |
| Winchester<br>148 LWC <u>3</u> 8<br>Special | 30″        |           | 30″           |             |           |           |            |
| Blue Dot                                    | 30"        | 36"       | 36"           | 36″         | 30"       | 36"       | 42"        |
| Accurate No.5                               | 24"        | 36"       | 36"           | 30″         | 30"       | 36"       |            |
| Unique                                      | 18"        | 18"       | 24"           | 24″         | 18"       | 24"       |            |
| Bullseye                                    | 18"        | 24"       | 30"           | 24″         | 18"       | 24"       |            |
| Clays                                       | 12"        | 12"       | 12"           |             |           |           |            |

### The Ammunition & Burn Rate

|                                     | Relative Burn Rate | Minimum Load | Maximum Load |
|-------------------------------------|--------------------|--------------|--------------|
| Remington 110 JHP 357<br>Magnum     | Mid                |              | 9.08 Grains  |
| Winchester 110 JHP 357<br>Magnum    | Mid                |              | 9.02 Grains  |
| Federal 110 JHP 357<br>Magnum       | Mid                |              | 9.64 Grains  |
| Remington UMC 125 JSP<br>357 Magnum | Slow               |              | 17.54 Grains |
| Remington UMC 130<br>FMJ 38 Special | Mid                |              | 4.88 Grains  |
| Winchester 148 LWC 38<br>Special    | Fast               |              | 2.7 Grains   |
| Hercules Blue Dot                   | Slow               | 7.5 Grains   | 12.0 Grains  |
| Accurate No. 5                      | Slow               | 6.1 Grains   | 11.0 Grains  |
| Hercules Unique                     | Mid                | 5.0 Grains   | 9.6 Grains   |
| Hercules Bullseye                   | Fast               | 4.0 Grains   | 8.0 Grains   |
| Hogdgon Clays                       | Fast               | 3.5 Grains   |              |

### Burn Rate?



### **Powder Burn Rate Correlation**

Powder Burn Rate v. Distance



### Conclusions

- Velocity may play a small role, but overall not a major factor
- Barrel length shows some correlation in reloaded 38 special, but not 357
- Powder burn rate shows the highest correlation to maximum distance achieved
  - Slower powders will persist longer and have patterns at further distances
  - Faster powders will burn out sooner and do not produce patterns at further distances
- Examiner would expect to see a smoke pattern up to 12"
  - Beyond 12" pattern results are variable with ammo and gun used

### Other factors

- These patterns were produced under laboratory conditions and were not exposed to excessive movement, blood or handling.
- Controlled environment also means no environmental factors came into play.
- Targets did not have sturdy backing and this was shown to affect the amount of tearing of target fabric



Rossi 92SRC @ 3" w/ Rem UMC 125 JSP w/ backstop

Rossi 92SRC @ 3" w/ Rem UMC 125 JSP w/o backstop

### References

- Adams, Beckett. (2013). 'Reloading': The Booming Gun Hobby and What It Could Mean for the Ammunition Industry. Retrieved from <u>http://news.yahoo.com/reloading-booming-gun-hobby-could-mean-ammunition-industry-122212211.html</u>
- Alliant Powder. (n.d.). Reloader's Guide. Retrieved from http://www.alliantpowder.com/reloaders/RecipeList.aspx?gtypeid=1
- Brudenell, A. (2012). Gunshot Residues from a Pistol and Pistol Caliber Carbine. AFTE Journal, 44 (3). 218 226.
- Crego, L. (2011). Distance Determination Results When Utilizing the Same Make, Model and Barrel Length Firearms. AFTE Journal, 43 (4). 288 – 302.
- Dillon, J. (1990). The Modified Griess Test: A Chemically Specific Chromophoric Test for Nitrite Compounds in Gunshot Residues. AFTE Journal, 22 (3). 243 – 250.
- Dillon, J. (1990). The Sodium Rhodizonate Test: A Chemically Specific Chromophoric Test for Lead in Gunshot Residues. AFTE Journal. 22 (3). 251 – 256.
- Grain. (2013). In Encyclopædia Britannica. Retrieved from http://www.britannica.com/EBchecked/topic/240807/grain
- Haag, L., Tew, J. (2006). The Effect of Revolver Cylinder Gap on GSR Production and Projectile Velocity. AFTE Journal, 38 (3). 204 212.

### **References** Continued

- Halim, M., Ahmad, U., Yew, C., Abdullah, M. (2010). Analysis of Gunshot Residue Deposited on Cotton Cloth Target at Close Range Shooting Distances. Malaysian Journal of Forensic Sciences, 1(1), 48-53. Retrieved from <u>http://www.academia.edu/859499/Analysis\_of\_Gunshot\_Residues\_Deposited\_on\_Cotton\_Cloth\_Target\_at\_Close\_Range\_Shooting\_Distance</u>
- Prodgdon Powder Co. (1992). Hodgdon Smokeless Powder Data Manual (26th Ed.). Kansas: Author.
- Hodgdon Powder Co. (n.d.). Reloading Data Center. Retrieved from http://data.hodgdon.com/cartridge\_load.asp
- How Far Will Shooting Distance Determination Take Your Case. (2009). Under the Scope, 9 (2). Retrieved from <a href="http://www.mshp.dps.mo.gov/MSHPWeb/Publications/OtherPublications/documents/underTheScopeg-2.pdf">http://www.mshp.dps.mo.gov/MSHPWeb/Publications/OtherPublications/documents/underTheScopeg-2.pdf</a>
- Proper Omark Industries. (1979). Reloading Manual Number Ten for Rifle and Pistol. Idaho: Author.
- SWGGUN. (2012). Guidelines for Gunshot Residue Distance Determinations. AFTE Journal, 44 (4). 371–374.
- Trimpe, Michael. (2011). The Current Status of GSR Examinations. FBI Law Enforcement Bulletin. Retrieved from <a href="http://www.fbi.gov/stats-services/publications/law-enforcement-bulletin/may\_2011/The%20Current%20Status%200f%20GSR%20Examinations">http://www.fbi.gov/stats-services/publications/law-enforcement-bulletin/may\_2011/The%20Current%20Status%200f%20GSR%20Examinations</a>
- Western Powders. (n.d.). Reloading & Loading Data Guide. Retrieved from http://www.accuratepowder.com/load-data/

### Acknowledgements

- Dwight Deskins, Jessica Copeland & the KSP Eastern Regional Forensic Laboratory
- 🖉 Dr. Staton
- FMrs. Rushton
- 🖉 Jessica Ybarra
- FAlison Quereau
- Scott Doyle

### Questions?



### http://www.youtube.com/watch?v=QfDoQwIAaXg