
Page 1 of 49

Investigation of Cryptocurrency Wallets on

iOS and Android Mobile Devices for Potential Forensic Artifacts

Angelica Montanez

Department of Forensic Science, Marshall University

Summer 2014

The author thanks Michael Younger and Breandan Gleason from Stroz Friedberg LLC,
Terry Fenger, PhD, from the Department of Forensic Science. Marshall University, and
Christopher Vance from Access Data, Inc. for their insight, guidance, and mentorship during this
research project.

Page 2 of 49

Abstract

As their use no doubt increases in the coming years, it is important for those in law

enforcement and forensics to be familiar with systems of digital currency. Although the infamous

“Silk Road”—described by some as a black-market Amazon or eBay—was shut down by the

FBI in late 2013, cryptocurrencies are still being used in illegal transactions. The purpose of this

research was to examine the most popular wallet applications for the cryptocurrencies Bitcoin,

Litecoin, and Darkcoin on mobile devices for potential forensic artifacts. Using various forensic

extraction tools, the data generated from controlled trading was extracted from an Android and

an iOS device, parsed, and then analyzed for any data that could potentially link a

cryptocurrency wallet, whether active or deleted, to a specific device.

 Upon completion of this research, it was determined that the Universal Forensic

Extraction Device (UFED) Physical Analyzer successfully harvested data indicating present

cryptocurrency wallet application presence on both the iOS and Android devices, but past wallet

indicators were extracted only for the Android device. Specifically for the iOS, the iFunBox tool

was determined to be useful only for confirmation of active wallet application presence on an

iOS device. Specific to Android devices, the Android Debug Bridge (ADB) pull command-line

tool could successfully extract a wealth of valuable transaction information for active

cryptocurrency wallet applications. In addition to transaction data, the ADB pull was also

capable of extracting information indicating present and past wallet presence on the mobile

device, but only if the wallet had been installed via a downloaded APK file.

 Ultimately, the results of this research may serve to aid law enforcement in connecting

unlawful transactions involving these cryptocurrency wallets on Android devices to implicated

individual(s) and devices. Further research is still needed to discover a more reliable method for

extracting cryptographic wallet data from iOS devices.

Page 3 of 49

I. Introduction

 It has been argued that a cover of anonymity increases the likelihood of participation in

illegal activities. After recent media illustrations of Bitcoin and alt-coins (all coin alternatives to

Bitcoin), most discussions of these cryptographic currencies bring up this connection between

criminal intent and anonymity. It is under the false supposition that these cryptocurrencies offer

true anonymity in electronic transactions that trading websites such as the Silk Road, essentially

a black-market Amazon or eBay, were created and became popular for criminal dealings.

Although the Silk Road was shut down by the FBI in 2013 for its part in facilitating the exchange

of illegal goods for the cryptocurrency Bitcoin, the existence of similar websites supporting

illegal business resolutely persists.

Because these currency systems have been affiliated with illegal activities, it is necessary

for them to be forensically researched. Digital forensics is predominantly concerned with user-

generated data—to search for signs of user activity amid the software and memory of digital

devices. With peer-to-peer transactions as the fundamental purpose of cryptocurrencies, these

digital currency systems offer a plethora of user activity. While many have conducted studies on

the deanonymisation of a currency’s public transaction ledger, less has been done to investigate

the electronic wallets that users download to hold their coins. Since an electronic wallet is for

many the prominent access point into the cryptocurrency’s transaction network, a user’s

electronic cryptocurrency wallet should be an ample store for user-generated data.

Figure 1 (see Appendix) is a pictorial summary of how a cryptocurrency transaction is

performed. First, a user installs a wallet onto his computer or mobile device and, either through a

third-party exchange or a donation from another user, he accumulates a sum of coins (1). To send

some of these coins to another user, he goes into his wallet application and submits a request to

Page 4 of 49

transfer a sum of coins to the next user (2). The payment information is gathered into a block and

the block is broadcast to the entire user network for verification (3). If the verification is

successful, the new block is added to the block chain, which is a public ledger of all past

transactions in the network (4). Finally, the transferred coins are delivered to the new owner’s

wallet and the transaction is complete (5) (“Virtual Currency,” 2014).

 Figure 1. A Basic Cryptocurrency Transaction

Cryptocurrencies were initially created to blend the features of physical money into

existing forms of electronic payments. The use of cryptography in these payments is what

ensures protection from theft or fraud. Like an exchange of physical money, a cryptocurrency

transaction does not explicitly identify the parties involved (Meiklejohn, Pomarole, Jordan,

Levchenko, McCoy, Voelker, and Savage, 2013). Unlike cash, however, cryptocurrencies

transactions also work like an electronic payment in that an outside third-party intermediary is

required to safeguard honesty from both sides during the transfer. While cryptocurrencies do

require mediation, they are unique in that the responsibility of validating transactions rests with

the entire user network instead of an outside financial institution. So while a real-world identity

is never tied to a transaction or an address, every transaction that occurs is visible to every user

in the network. It is presumably the misinterpretation of these pseudo-anonymous transactions as

a truly anonymous process that sparks criminal interest in these currencies.

Page 5 of 49

Although used currently by only a small portion of the national and world populations,

cryptocurrencies are growing in prevalence and thus must be researched and understood. In this

particular research, the cryptocurrency systems of interest are Bitcoin, Litecoin, and Darkcoin.

Although each currency has its unique features, which are discussed in detail in Section II, their

general protocol is the same given that the latter two are based upon the open-source code of

Bitcoin. The theory driving this research is that, as a digital system, a cryptographic wallet will

leave artifacts related to its presence and activity in the memory of a mobile device that can be

found after forensic investigation. The work here will essentially be a discovery procedure to

investigate the potential wealth of user information generated by the existence of cryptocurrency

wallet software on iOS and Android mobile devices.

The methodology for this research involves the trading of the three cryptocurrencies

Bitcoin, Litecoin, and Darkcoin. These cryptocurrencies were researched using a physical Apple

iOS mobile device, a physical Samsung Galaxy S4 Android device, and an emulated Android

mobile device in a controlled lab setting. As is described more fully in Section III, wallet

application data was forensically extracted from the devices at four different stages in the testing

process, throughout which the presence and use of the wallet applications on the devices

changed. Upon completion of trading and imaging, the collected data of the mobile devices was

analyzed with a variety of forensic software for information that could potentially link a

cryptocurrency wallet or transaction to a specific device or real identity. The results of these

analyses are detailed in Section IV. Section V provides a conclusive overview of this research,

while Section VI offers suggestions of future research prospects and ways in which digital

forensic examiners can use the results of this research in the investigation of cases involving

cryptocurrency use on mobile devices.

Page 6 of 49

II. Background

 Provided here is an in-depth overview of the unique features that distinguish Bitcoin,

Litecoin, and Darkcoin cryptocurrencies. Given that Litecoin and Darkcoin grew out of the

operational skeleton of the Bitcoin protocol, Section II.A describes the underlying causes for the

creation of a cryptocurrency system, as well as how “gold standard” Bitcoin functions, while

Sections II.B and II.C detail why Litecoin and Darkcoin were subsequently created from the

Bitcoin protocol and how they are unique. Describing these differences is important in further

understanding how each of these currencies and their components can be used and potentially

manipulated. Since it is possible that forensic analysis may also vary with each type of currency,

it is crucial for investigators to be familiar with the distinct features of these digital systems.

II. A. Bitcoin Features

 Bitcoin is a virtual currency that makes use of cryptography in the creation and

management of its digital currency system. Created by the pseudonymous Satoshi Nakamoto and

launched in early 2009, the main drive behind the creation of Bitcoin was to replace existing

virtual commerce methods, which relied heavily on financial institutions to process electronic

transactions in a trust-based model, with a system in which payments are moderated by an

unaffiliated and more reliable third party: cryptographic proof (Nakamoto, 2008). To accomplish

this, Bitcoin operates in a decentralized peer-to-peer network, meaning that instead of a single

entity holding responsibility for payment verification, consensus of the entire Bitcoin network

determines the validity of each payment (de la Porte, 2012).

 There are a numbers of ways in which an individual can become involved in the Bitcoin

network. On either a personal computer or a mobile device, a user can trade Bitcoins for goods

Page 7 of 49

and services with other users or participating vendors; he can trade in coins for traditional

currencies on a Bitcoin exchange platform; he can donate to a political party, charity, or a friend;

or he can take on the role of a miner and lend his resources to the verification of other users’

transactions (Luther, 2013). To begin, a user installs the open-source Bitcoin client—a Bitcoin

wallet—onto his computer(s) to manage his account. There are two types of wallets available for

download: a software wallet, which is installed straight onto a device, or a web wallet, which is a

wallet hosted by a third party (“How to Set Up a Wallet,” 2013). Through a wallet, a user is able

to receive, store, and send bitcoins.

 An individual bitcoin is actually a chain of digital signatures (Nakamoto, 2008). These

signatures are hash values that represent each sequential transfer of a coin from one user’s public

key to another. As a coin is transferred from user to user, the coin develops a unique chain of

signatures that starts with the creation of the coin and has an end that changes as the coin

continues to be passed along. A user’s coins are held in an encrypted wallet, where his sets of

private and public key pairs are also stored (Luther, 2013). When a user goes into his electronic

wallet to send coins, his unique secret signing key (private key) is used to generate a SHA-256

hash composed of past and future transaction information. This first hash is the sender’s digital

signature. The combination of this signature with the hash of the previous transaction and the

recipient address is collectively called a coin transaction. Because each transaction includes a

reference to the previous one, the sequence of transactions forms a chain, which is recorded in

the coin (Luther, 2013). The coin transaction is next combined with the public key of the receiver

to ensure it can only be opened by the receiver. Finally, the bundle is cryptographically hashed

once more into what becomes a new block (Luther, 2013). A block is synonymous for a

Page 8 of 49

transaction. This process of generating a Bitcoin block is pictographically summarized in Figure

2 (red denotes sender components and green denotes receiver).

Figure 2. Cryptographic Processing of a Bitcoin Transaction

To ensure that a bitcoin is legitimate in terms of ownership, a block must be verified

against the public ledger (Luther, 2013). This verification is not performed by one user, however.

The information in the new block is broadcast to the entire network of users for verification

(Luther, 2013). To check the validity of the block, and ultimately complete the transaction, it

must be added to the official block chain—a globally visible and accepted ledger consisting of

all past transactions—by a Bitcoin miner (Luther, 2013). Put simply, mining is the term used for

Page 9 of 49

the process of computing complex hash calculations in order to verify Bitcoin transactions

(“Mining,” 2013). During mining, the new block is compared to the historical list of transactions

on the ledger. In order for the block to be confirmed, the current end of the transaction chain in

the submitted coins must point to the sender as the rightful, current owner.

 If ownership, and thus the block, is confirmed to be valid, the block is created and the

reward—a sum of new bitcoins—for finding that block goes to the miner whose work produced

the correct hash (Meiklejohn, Pomarole, Jordan, Levchenko, McCoy, Voelker, and Savage,

2013). The new block is then broadcast to the network so that the public ledger can be updated.

Finally, the payment is permitted to pass on to the receiver. With her wallet, the receiver decodes

the hash information using her own private key and thus ownership of the coin is successfully

transferred to her (Luther, 2013). Once an entirely new payment is submitted and a newly

created block references this block as the previous one in the historical chain, the block is fully

accepted as part of the public block chain (Meiklejohn, Pomarole, Jordan, Levchenko, McCoy,

Voelker, and Savage, 2013).

 The uniformity required of a currency system mediated by a widespread network of peers

depends on a sound method of communication. Though simple, the Bitcoin protocol effectively

provides reliable interconnectedness and harmony to its dynamic peer-to-peer network. Peers in

the Bitcoin network connect to one another over an unencrypted TCP channel. The Bitcoin

protocol implements propagation and discovery mechanisms through the use of what are called

messages. A message is essentially a communication flag whose name is specific intent. Nodes

send and receive these messages from one another in order to spread a variety of requests

through the entire network. To circulate addresses, for example, a node can request a list of

neighboring peers in the network using GETADDR messages, as well as convey its own list of

Page 10 of 49

known addresses using the ADDR message. Collectively, these messages are used for peer

discovery, connecting to peers, block broadcasting, and transaction broadcasting. Of particular

interest to this research is the TX message, which is used to describe transactions. There are

multiple steps from the start to finish of a transaction broadcast. First, the sender submits an INV

(inventory) message with the transaction hash. If the hash passes the validity checks on the

receiver’s end, the receiver sends back a GETDATA message. The sender then transmits the

real transaction in a TX message. When the transaction reaches the receiver, he broadcasts an

INV message to his peers so that the block chain can be updated (Birukov, Khovratovich, and

Pustogarov, 2014; “Bitcoin Developer Guide,” 2009).

II. B. Litecoin Features

 Marketed as the “silver to Bitcoin’s gold” cryptocurrency status, Litecoin protocol

predominantly mirrors that of Bitcoin. While accepting and even promoting its second place

status since its debut in October 2011, Litecoin’s creator, Charles Lee, did create Litecoin to

have features which he believed to be better than those offered by Bitcoin. His aspiration for

Litecoin was to be a faster and more energy efficient cryptocurrency. To distinctly differentiate

Litecoin from Bitcoin, three parameters were altered: the number of coins to introduce into

circulation, the rate of block generation, and the hashing algorithm utilized (Sprankel, 2013).

 Instead of a cap of 21 million coins like Bitcoin, the limited supply of Litecoin sits at 84

million coins, which is four times the number of coins than the Bitcoin network will issue

(Sprankel, 2013). By having more coins available for circulation, smaller divisions of coins can

theoretically be made and thus smaller transaction values become more feasible. This is

Page 11 of 49

particularly attractive for merchants that operate on many small transactions being made at a

high rate (“Main Page,” 2011).

 The quicker transaction time offered by Litecoin is another feature that aids in the

practicality of small value trades. In just two and a half minutes, as opposed to ten minutes with

Bitcoin, a transaction will be put out to the network, undergo verification, and complete the

transfer from sender to recipient. A faster confirmation time means less anxiety for both trading

parties and also a much smaller window for potential hackers to interrupt the transaction chain

(“Main Page,” 2011).

 Finally, Litecoin makes itself available and useable to a broader scope of users with its

mining capabilities. By using the hashing algorithm called scrypt to provide the cryptographic

security and complexity to mining efforts, coins can be generated and transactions verified by

standard computers with consumer-grade hardware which most individuals already own (“Main

Page,” 2011). In addition to its capacity for attracting more miners, Litecoin’s use of scrypt

means that this mining system does not interfere with Bitcoin’s system. If a capable user so

desires, he may put his machines to mine both cryptocurrencies simultaneously. In this way,

Litecoin aligns itself more as a currency complimentary to Bitcoin than as a true competitor

(“Litecoin,”, 2014).

II. C. Darkcoin Features

 Released in March 2013, while Darkcoin is also an offshoot of Bitcoin, it is radically

different than Bitcoin and any other cryptocurrency in its privacy design. Formulated with the

purpose of providing true anonymity to transactions, Darkcoin eliminates the capacity to even

link a transaction with the correct corresponding source or destination addresses. As creator Evan

Page 12 of 49

Duffield writes in the white paper of Darkcoin, his currency can solve the blockchain’s inherent

inability for true privacy with the implementation of DarkSend (Duffield and Hagan, 2014).

 The basic Darkcoin system operates just as Bitcoin does; however, the verification

method of Darkcoin transactions is unique with the availability of DarkSend. It is an optional

implementation available to Darkcoin users and can be deactivated at any time per the user’s

wishes (Duffield and Hagan, 2014). The innovation of DarkSend lies in its ability to mix the

inputs and outputs of transactions traveling through the DarkSend payment system (“What is

Darkcoin?”, 2014). With DarkSend enabled, a payment request is automatically split into smaller

coin denominations and then combined with other split transactions of similar size into pools of

larger transactions. A master node for each pool is then randomly elected to serve as the

transaction mediator for that session. This master node is a user who has volunteered their

resources and 1000 Darkcoins for the privilege of assuming the role. The steep requirement aims

to keep the master nodes honest and a reward of 20% of the newly mined coins provides

incentive for miners to continue offering their services (“DarkSend,” 2014).

 Once the master node is established, the mixing begins. Since all inputs in the pool are

equal in size, all outputs are virtually the same and can therefore be shuffled around

interchangeably. A scheme involving blind signatures is utilized, though, to ensure the outputs of

the pool will belong only to participants in that pool. This tactic additionally ensures that no user,

not even the master node, knows which outputs are linked to which inputs. Once the obfuscation

process is complete, the master node presents the finalized transactions to the participants. If

each participant confirms their respective inputs and outputs amounts as correct, the transactions

are signed and the master node broadcasts the new blocks to the network, then resigns its

Page 13 of 49

position. Anyone who views the block chain thereafter will see the completed payments but will

not be able to match senders to receivers (Duffield and Hagan, 2014).

 Other unique features of Darkcoin include the use of a highly secure hashing algorithm

X11, a total transaction time of 2.5 minutes, and a maximum supply of approximately 22 million

coins (“What is Darkcoin?”, 2014). In totality, Darkcoin is the first—and currently only—

cryptocurrency to boast of privacy-centered operations since the creation of Satoshi Nakamoto’s

Bitcoin (Duffield and Hagan, 2014).

III. Methodology

 To investigate the potential forensic artifacts left behind in mobile device memory by

cryptocurrency wallets after controlled trading, the most popular wallet applications available for

Bitcoin, Litecoin, and Darkcoin were considered for iOS and Android mobile devices. The

wallets were tested in the most basic, user-only condition, so blockchains were never

downloaded, addresses were not saved, coins were not publicly requested, only one address was

used per wallet, and the wallets were not backed up.

 The basic investigative premise was to extract the application data of each wallet from

the two types of mobile devices at four different points in the installation and trading processes:

(1) after a factory reset of the phone and prior to the installation of the wallet applications, (2)

after wallet installation and before trading, (3) after completion of controlled trading of the

currencies, and (4) after the wallet applications had been deleted from the device. Comparison of

the data from stages 1 and 2 allow wallet-specific data to be distinguished from other software

and application data native to the mobile device. Comparison of 2 and 3 permits the distinction

of any transaction-specific alterations to the devices’ memory. Comparing data from stage 3 to 4

Page 14 of 49

will reveal if any indicators of the wallet applications’ presence on the device still exist after

deletion of the wallet applications.

 All extracted data was saved onto a Seagate Barracuda 1 (one) terabyte hard drive that

had previously been forensically wiped and verified. A DiskCypher SATA 256 with an

encryption key was attached to the hard drive to protect the contents of the hard drive. Using

current forensic analysis tools and software, these extractions were gleaned for any links between

user-related information and the data pulled from the application software.

III. A. Physical iOS Device

 To test the iOS operating system, an Apple iPhone 4 (Model A1332) running iOS version

7.1.1 was used.

III. A. 1. iOS Extraction

 In each of the four stages of the experiment, two methods of data extraction from the iOS

device were used. The first was Cellebrite UFED Physical Analyzer (version 3.9.8.7) software.

After opening the application on a desktop computer, the mobile device was plugged into one of

the USB ports using the Cellebrite Tip T-110 attached to Cable A. In the application Graphic

User Interface (GUI), the Advanced Logical extraction was selected and both extraction Method

1 and 2 were performed. The extracted images were saved for later analysis.

 The second method for extraction was iFunBox, an open-source app/file manager for iOS

devices. Immediately after extraction in UFED Physical Analyzer for each stage, iFunBox was

used to actively examine and extract application data from the still-connected iPhone. The File

System folder was extracted using the iFunBox’s Dump feature and saved to the encrypted hard

Page 15 of 49

drive. Since iFunBox is fundamentally an active file/app managing tool, analysis of the wallet

applications could only be performed for Stages 2 and 3, when the wallets were still installed on

the device.

For both methods of extraction, all collected data was saved via the Dump option (if

possible) or by screenshot to the encrypted hard drive.

III. A. 2. iOS Stage 1: Device Set-Up

To ensure all data found on the mobile device was exclusively from the experiment, the

phone was reset to factory settings. During the set-up process after resetting the phone, the

device was configured to connect to the lab’s private wireless network and a test email address

was saved for future use in the iTunes App Store. Once the set-up process was complete, the

phone was imaged with UFED Physical Analyzer and examined iFunBox.

III. A. 3. iOS Stage 2: Installation of Wallet Applications

Opening the iTunes App Store on the home screen of the device, the following Bitcoin

wallet applications were installed onto the device: bitWallet (v. 1.5) by Sollico Software and

Coin Pocket (v. 1.1.0) by Enriquez Software LLC. Litecoin- and Darkcoin-specific wallets

could not be tested on the iOS in this project due to the ban Apple had placed on apps involving

the transmission of virtual currencies in early 2014. This ban was lifted the first week of June

2014, less than a month before the beginning of this research, and so the availability of wallets

for any currency that allowed the transference of coins and not simple fund-monitoring was

scarce.

Page 16 of 49

Both wallets were installed and operated as user-only; therefore, the block chains were

never downloaded to the devices and no mining was performed. Once the wallets were

successfully installed, each application was tapped to start. Having been opened once, the mobile

device was then imaged by UFED Physical Analyzer and examined in iFunBox.

III. A. 4. iOS Stage 3: Trading

 Trading occurred over a private wireless Internet connection. Trades were made with

both a known user running desktop wallet applications and the physical Android device

maintained in this experiment. A log in Microsoft Word was kept to record important transaction

information such as sender/recipient addresses, transferred amount, the transaction hash, and the

date and time stamps. After each wallet had a minimum of two received and two sent

transactions, the device underwent extraction and examination.

III. A. 5. iOS Stage 4: Wallet Application Deletion

 After each wallet application completed two send and two receive requests, the wallets

were emptied in a final transaction to send the coins back to their owner. Once successfully

emptied, the applications were deleted by pressing down on the icon until all of the app icons

begin to wiggle and an encircled “X” appeared in the top right corner of each icon. The “X” for

both the bitWallet and Coin Pocket wallet applications were selected and confirmed in the pop-

up window for uninstallation. Once uninstalled, the mobile device data was extracted with UFED

Physical Analyzer and examined in iFunBox.

III. A. 6. iOS Analysis

Page 17 of 49

To analyze the collected memory data from the iOS, UFED Physical Analyzer was used

to examine the extracted .ufd files. From the encrypted hard drive, the files were opened in

UFED Physical Analyzer to decode and parse the collected data. Once parsed, all extracted

information listed in the left project tree pane in the GUI were examined for potential forensic

artifacts. In particular, the Analyzed Data, the Data Files, Timeline, and File Systems tree items

and all sub-items under each were assessed. Any extracted databases were examined both in the

data view in Physical Analyzer and in the open-source tool DB Browser for SQLite. All relevant

data found was dumped as a file onto the Seagate hard drive and/or was documented with a

screen capture.

As described previously, iFunBox is more of an active examination tool. For each stage,

all items listed in the left project tree pane in the GUI were examined for potential forensic

artifacts while the phone was connected to the computer. As for extracted data, the File System

folder from all four stages along with the specific wallet application files from Stages 2 and 3

were later analyzed using Notepad++ and DB Browser for SQLite.

III. B. Physical Android Device

To test the Android operating system, a Samsung Galaxy S4 (Model GT-I9500) running

Android OS version 4.4.2 was used. No SIM card was inserted.

III. B. 1. Physical Android Extraction

 In each of the four stages of the experiment, data extraction from the Android device was

performed using a Cellebrite UFED Touch Ultimate hardware device. The mobile device was

connected to the UFED unit using Cable A with Tip T-100. Once plugged in, the UFED

Page 18 of 49

automatically detected the device and a prompt window appeared listing extraction options for

CDMA and GSM models of the Samsung GT-I9500 Galaxy S4 device. Ultimately, all possible

extraction types targeting all possible content types for both CDMA and GSM versions of the

phone were performed to ensure all potential data was collected. For the CDMA model, the only

extraction option was a Logical Extraction. For the GSM version, extraction options included a

Logical Extraction, a File System Extraction with “Android Backup – NO Shared,” and a File

System Extraction with “Android Backup-with Shared.” The options of “no shared” and “with

shared” refers to the exclusion or inclusion of existing shared preferences for applications in the

backup.

Since the mobile device was running above Android version 4.2, the settings on the

device had to be changed to activate Developer Options, allow Android/USB Debugging, and

configure the screen to “Stay Awake” while on. The instructions for making these changes were

provided by the UFED device before the extraction began. They can also be found on the

Android Developers website.

 All extractions were initially saved to a removable USB flash drive inserted into the

UFED target port. Once all extractions for a stage were completed, the USB was plugged into the

desktop computer and the extracted folders were cut from their place on the flash drive and

pasted onto the encrypted Seagate hard drive for later analysis in UFED Physical Analyzer.

III. B. 2. Physical Android Stage 1: Device Set-Up

 To ensure all data found on the mobile device was exclusively from the experiment, the

phone was reset to factory settings. During the set-up process after resetting the phone, the

device was configured to connect to the lab’s private wireless network and a test email address

Page 19 of 49

was saved for future use of the Google Play Store. Once the set-up process was complete, the

phone was imaged with UFED Touch.

III. B. 3. Physical Android Stage 2: Installation of Wallet Applications

 From the Google Play Store icon on the home screen, the following wallet applications

were installed onto the device: Bitcoin Wallet (version 3.53) by Andreas Schildbach, Hive

Bitcoin Wallet (v. 0.3.3.3.46) by Hive Labs, Litecoin Wallet (v. 3.30.9) by Litecoin Project, and

Darkcoin Wallet (beta) (v. 1.0.1) by Hash Engineering Solutions. Each wallet was installed and

operated as user-only; therefore, the block chains were never downloaded to the devices and no

mining was performed. Once the wallets were successfully installed, each was tapped to start.

Having been opened once, the mobile device was again imaged using the UFED Touch.

III. B. 4. Physical Android Stage 3: Trading

 Trading occurred over a private wireless Internet connection. Trades were made with

both a known user running desktop wallet applications and the physical iOS device maintained in

this experiment. A log in Microsoft Word was kept to record important transaction information

such as sender/recipient addresses, transferred amount, the transaction hash, and the date and

time stamps. After each wallet had a minimum of two received and two sent transactions, the

device underwent extraction.

III. B. 5. Physical Android Stage 4: Wallet Application Deletion

 After each wallet application completed two send and two receive requests, the wallets

were emptied in a final transaction to send the coins back to their owner. Once successfully

Page 20 of 49

emptied, the applications were deleted using Android’s built-in Application Manager. To access

it, the Settings app was opened, the More tab was tapped, and Application Manager was selected.

In Application Manager was a list of the currently installed apps. To uninstall the wallet

applications, the icon of each was tapped and then the Uninstall button at the top of the

subsequent screen was selected. Once all four wallet applications were uninstalled, the mobile

device data was extracted with the UFED Touch.

III. B. 6. Physical Android Analysis

 To analyze the collected memory data from the Android device, UFED Physical

Analyzer was used to examine the extracted .ufd files. From the encrypted hard drive, the files

were opened in UFED Physical Analyzer to decode and parse the collected data. Once parsed, all

extracted information listed in the left project tree pane in the GUI were examined for potential

forensic artifacts. In particular, the Analyzed Data, the Data Files, Timeline, and File Systems

tree items, as well as all sub-items under each. Any extracted databases were examined in both

the Data view pane in Physical Analyzer and in the open-source tool DB Browser for SQLite.

All relevant data found was dumped as a file onto the Seagate hard drive and/or was documented

with a screen capture.

III. C. Virtual Android Device

 To run the second method of extraction for the Android operating system, a physical

mobile device was no longer available and so a virtual Android device was used. The open-

source tools Genymotion (v. 2.2.2) and Oracle VM VirtualBox (v. 4. 3. 14) were downloaded to

create this virtual device (emulator). Mirroring the device used in the first extraction process, two

Page 21 of 49

virtual Samsung Galaxy S4 devices running Android OS version 4.4.2 were created for this

portion of the experiment.

 III. C. 1. Virtual Android Extraction

 A component of the Genymotion Android Emulator that proved useful for extracting

application data in this project was the Genymotion Android tool package. Automatically

downloaded and available with the installation of Genymotion, these command-line tools are

similar to those used for Android SDK, which are a set of development and debugging tools. The

specific tool used in this project was the Android Debugging Bridge (ADB) pull command.

 In order to use ADB pull on the virtual devices, the emulators had to be open and running

on the computer. Additionally, the unique Google ID for each wallet was needed in order to

direct the tool to pull the data from a specific wallet application. This ID was found by searching

the wallet application name on the Google Play Store website and then seen in the URL of the

application details page, as shown in Figure 3.

Figure 3. Location of the Google ID of an application (red) within its Google Play Store URL.

Page 22 of 49

 To access the ADB tools, a command prompt was opened and navigated to the

C:\Program Files\Genymobile\Genymotion\tools directory. This directory is the default location

selected for storing the Genymotion tools during the installation process. The data unique to each

wallet application was then pulled from the emulator and directed to a designated output

directory on the local computer using the command syntax displayed in Figure 4. A successful

ADB pull was confirmed by comparing the number and names of the files seen in the specified

output directory open in a Windows Explorer GUI to what was printed in the command line

window output (Figure 5).

Figure 4. ADB pull command syntax to extract Android Bitcoin Wallet application data.

Page 23 of 49

Figure 5. Command prompt output of a successful ADB pull of the Bitcoin Wallet application

data.

Since application-specific data could only be pulled from an installed application,

however, no wallet application data was extracted in Stage 1. All other application data present

on the emulator, however, was pulled after each of the four stages and saved to the encrypted

hard drive.

III. C. 2. Virtual Android Stage 1: Device Set-Up

 After successful installation of Genymotion and Oracle VirtualBox, Genymotion was

started. Two new virtual devices were created with the specifications listed in Table 1.

Specification Setting
Android version 4.2.2
Device model Samsung Galaxy S4

Page 24 of 49

Memory size 2048 MB
Data storage capacity 16,394 MB

Table 1. Genymotion Android Emulator Set-Up Specifications

Once the emulators were successfully created, they were ready to use. After powering on

an emulator, it was necessary to check that wireless capabilities were enabled in order to

successfully download the wallet applications and make trades. If the gray wireless symbol was

visible in the top right corner of the emulation window, it was confirmed that the emulator was

properly set up. To confirm connectivity in a second way, the browser application was opened

and a Google search was made. If the search completed and displayed results, it was determined

that the device was properly configured.

 As with the physical Android device, the emulator required activation of Developer

Options so that USB Debugging could be enabled to successfully extract application data.

Navigation through the settings to make this change was the same as with the physical device

and is available for reference on the Android Developers website

Page 25 of 49

III. C. 3. Virtual Android Stage 2: Installation of Wallet Applications

 Before the wallet applications could be installed, a Security setting in the emulator had to

be changed. Clicking on the Settings icon within the emulator, the Security option was selected

from the Options menu. Under Device Administration, the box next to “Unknown Sources” was

checked to allow installation of apps from unknown sources onto the device.

 To install the applications onto the emulators, a third-party website was used to download

the wallets’ Android application package, or APK file, which contained the application software.

Clicking on the Browser icon on the emulator home screen, the following URL was typed into

the address bar: apps.evozi.com/apk-downloader. The Google ID of a wallet (obtained in Section

III. C. 1.) was typed into the input box on the page and then the “Generate Download Link”

button was clicked. After the package details appeared for the designated Google ID, the “Click

here to Download” button was clicked. This process is illustrated in Figure 6. Once the

application .apk file was successfully downloaded, the application was installed onto the device

from the Downloads menu.

Figure 6. APK Downloader: Details of the Bitcoin Wallet APK File.

Page 26 of 49

 After all four wallet applications were downloaded and installed onto the device, the

applications were clicked open since it was discovered that the ADB pull command could not

extract any wallet application data from the emulator if the application had never been opened.

With the emulator open and running, the first ADB pull extraction of each wallet application was

made and saved onto the Seagate hard drive.

III. C. 4. Virtual Android Stage 3: Trading

 Trading occurred over a private wireless Internet connection and was made between the

two Samsung Galaxy S4 emulations running simultaneously. A log in Microsoft Word was kept

to record important transaction information such as sender/recipient addresses, transferred

amount, the transaction hash, and the date and time stamps. After each wallet had a minimum of

two received and two sent transactions, the device underwent extraction.

III. C. 5. Virtual Android Stage 4: Wallet Application Deletion

 After each wallet application completed two send and two receive requests, the wallets

were emptied in a final transaction to send the coins back to their owner. Once successfully

emptied, the applications were deleted in the same way that the apps were deleted on the

physical Android device: using Android’s built-in Application Manager. To access it, the

Settings app was opened, the More tab was tapped, and Application Manager was selected. In

Application Manager was a list of the currently installed apps. To uninstall the wallet

applications, the icon of each was tapped and then the Uninstall button at the top of the

subsequent screen was selected. Once all four wallet applications were uninstalled, all

application data was extracted with ADB pull.

Page 27 of 49

III. C. 6. Virtual Android Analysis

 To analyze the collected memory data from the ADB pull extractions, Notepad++, an

open-source code editor, and DB Browser for SQLite were used. All files extracted from the

ADB pull were opened in Notepad++ to review and keyword search if the file was human-

readable. All extracted database files were opened in DB Browser for SQLite to assess the tables

for entries relating to the wallet applications. If relevant data was found, the database was

subsequently queried for specific wallet application data. All relevant data found in any program

was saved onto the Seagate hard drive and/or was documented with a screen capture.

IV. Data and Results

With both the physical iOS and Android mobile devices, after loading the UFED

extraction files in Physical Analyzer, all extracted components visible in the Project Tree were

analyzed. In particular, the Analyzed Data, the Data Files, Timeline, and File Systems tree items

and all sub-items under each. In addition to examination in UFED Physical Analyzer, select

database files were also analyzed in DB Browser for SQLite.

For the physical iOS device, active analysis using iFunBox was performed while the

phone was still attached to the computer for each stage. In these examinations, information listed

in the left project tree pane in the GUI was examined for potential forensic artifacts. From Stages

2 and 3, the File System folder and all wallet application files dumped from iFunBox were

analyzed in Notepad++.

For the virtual Android device, all files extracted with ADB pull were analyzed in either

Notepad++ or DB Browser for SQLite. The data pulled from the specific wallet applications in

Stages 2 and 3, along with all of the application data on the emulator in all four stages, were the

Page 28 of 49

items analyzed by these methods. It was found that the content of these pulls only pertained to

the activity made in the active session during which the pull was made and was erased after the

emulator was shut down.

IV. A. 1. Physical iOS Results – UFED Physical Analyzer

 Under the Analyzed Data tree item in Physical Analyzer, the only sub-item with any

relevant artifacts was Installed Applications. In Stages 2 and 3, the Extraction table in the data

display contained entries for bitWallet and CoinPocket (see Figure 7). A particularly key value in

the table for each application was its Identifier. In extraction tables encountered further on in the

analysis, these identifiers were found again. While these data entries were extracted in Stages 2

and 3, they did not persist after the wallet applications were deleted in Stage 4.

Figure 7. Installed Applications data table entries for bitWallet and CoinPocket from UFED iOS

Advanced Logical Extraction.

 Within the Data Files tree item, two categories were of interest: Configurations and

Databases. In both Method 1 and 2 of the Advanced Logical extractions, the Configurations sub-

item contained an entry with the details of a .plist file for the CoinPocket wallet, as shown in

Figure 8. A plist is a “property list” file used by iOS to store a user’s settings or information

about bundles and applications. These entries list the storage path of the .plist configuration files,

as well as the Created, Last Modified, and Last Accessed date and time stamps, which were

congruent with the true installation action of the wallet applications in the test. No configuration

Page 29 of 49

files existed for bitWallet in any of the four stages. As with the Installed Application data entries,

these CoinPocket entries were extracted after wallet installation, but not after deletion of the

wallets.

Figure 8. Device configuration files for CoinPocket from UFED iOS Advanced Logical

Extractions.

Under the Databases category, two databases with the CoinPocket identifier were

extracted after installation of the wallets (Figure 9). These database files were only seen in the

Method 2 extraction, however. The first is a cache database and the second is a local storage file.

After inspection in UFED and DB Browser for SQLite, neither database file was found to

contain relevant data. The Last Modified date and time stamps seen in the entries were updated

from Stage 2 to 3. Again, no database files for bitWallet were found and these database files for

CoinPocket were removed after deletion of the wallet applications from the mobile device.

Figure 9. Database files for CoinPocket from Method 2 UFED iOS Advanced Logical

Extraction.

 Physical Analyzer was not able to extract any data for the Time Line tree item in any of

the iOS .ufd extraction files. Additionally, analysis of the File Systems tree item revealed no

further artifacts of forensic relevance.

Page 30 of 49

IV. A. 2. Physical iOS Results – iFunBox

 While active examination of the iOS mobile device after each stage in iFunBox yielded

no relevant data, analysis of the extracted File System and wallet-specific files in Notepad++ did

turn up some pertinent data.

 In the wallet application dump of bitWallet, five folders were extracted—bitWallet.app,

Documents, Library, StoreKit, and tmp. In the Documents folder was an alerts.file file. When

opened in Notepad++, this file was found to contain the public address string of the wallet

installed on the device (see Figure 10). In the same folder was another file: wallets.v1. This file

listed not only the public address (key) of the wallet, but the private key as well (see Figure 11).

The other folders and files in the extractions of bitWallet did not hold relevant forensic data.

Figure 10. bitWallet: Content of the Alerts.file File Extracted by iFunBox.

Page 31 of 49

Figure 11. bitWallet: Content of the Wallet.v1 File Extracted by iFunBox.

 In the wallet application dump of CoinPocket, again five folders were extracted:

CoinPocket.app, Documents, Library, StoreKit, and tmp. None of the files in in these folders

held relevant forensic data.

 In the Raw File System dump of the mobile device from Stage 3, two folders containing

data related to the wallet applications were extracted: Purchases and Downloads. The Purchases

folder contained a handful of .plist files, but none of them were related to the wallet applications.

The Downloads folder contained a SQLite database file labeled downloads.28.sqlitedb. When

opened in DB Browser for SQLite, the database file contained a table labeled Purchase with two

entries. Within this table was encoded_data and encoded_response columns whose cells

contained binary data which, when interpreted, listed the names of the ID of the wallet

application downloaded, as well as the iTunes name of the individual who purchased the wallet

application, respectively (see Figures 12 and 13). No relevant date and time stamps were found.

These table entries were still extracted after the wallet application was deleted from the mobile

device.

Page 32 of 49

Figure 12. Wallet Application Name in the Binary Interpretation of the Dowloads.28.sqlitedb

Encoded_Data Column.

Figure 13. iTunes Name in the Binary Interpretation of the Dowloads.28.sqlitedb

Encoded_Response Column.

IV. B. Physical Android Device Results

 The Logical extractions yielded no data when opened in UFED Physical Analyzer.

 The Shared File System extraction did not contain any relevant information that was not

already included in the No Shared File System extraction. Thus, all results obtained were from

analysis of the No Shared File System extractions.

Page 33 of 49

 Under the Analyzed Data tree item in Physical Analyzer, the only sub-item with any

relevant artifacts was Installed Applications. After installation of the wallets, the extraction table

in the data display contained entries for the Bitcoin Wallet, Hive Wallet, Litecoin Wallet, and

Darkcoin Wallet applications (Figure 14). An especially key value in the table for each

application was its Identifier. As the analysis process progressed, these identifiers were found in

other extracted tables. Another column in this table containing pertinent data was the Purchase

Date. The date and time stamps in these cells correspond to the actual installation date and time

of the wallets onto the mobile device. These data entries for the wallets remained present in the

table after trading in Stage 3 and were still extracted after deletion of the wallet applications in

Stage 4.

Figure 14. Installed Applications data table entries from the UFED Touch Extraction of the

Android device.

 Within the Data Files tree item, the Databases category was the only one found to contain

data relating to the wallet applications after their installation. The launcher.db file, when opened

in DB Browser for SQLite, displayed two tables labeled AppOrder and Favorites. These two

tables contained a column listing the wallet identifiers, as found in the Installed Applications

table. The Favorites table also had a column describing the application’s Intent (see Figure 15).

An intent is defined by the Android Developers webpage as an abstract description of an

operation to be performed. More basically, it is a component involved in the launching of

Page 34 of 49

activities on the mobile device (“Intent”). For each of the four wallets, there was a Favorites

table entry listing the identifier and intent for the applications when clicked to launch. These data

entries for the wallets remained present in the table after trading, but were not extracted after

deletion of the wallet applications.

Figure 15. Favorites table of Launcher Database file in Physical Analyzer from the UFED

Touch Extraction of the Android device.

 A second database file named localappstate.db was found in the Android extractions

which contained a table labeled Appstate that held data relating to the wallet applications. When

opening in DB Browser for SQLite, this table listed the wallet application identifiers, as well as

the first download timestamps of the wallets, the most recent data delivery time stamp, and the

user account under which the wallet applications were downloaded. Figure 16 displays these

entries, which were selected by a SQL query for easier viewing. The timestamps, once converted

from Unix Epoch (Unix timestamp) to the correct time zone, were congruent with the application

install date and time, and the date and time when the wallet application was active on the mobile

device. These table entries were extracted after both trading and deletion of the applications.

Figure 16. Appstate table in DB Browser of LocalAppSate Database file from the UFED Touch

Extraction of the Android device.

 The Timeline tree item was quite informative for the Android device. After installation of

the wallets, two entry types of interest were extracted (see Figure 17). The first were the

Page 35 of 49

Installed Application entries—there was one for each of the four wallets, with date and time

stamps that matched the actual purchase date. The second was Searched Items entries. These

entries denoted terms typed into the search bar of the Google Play Store, which was, in fact, how

these wallets were located in the Play Store for download onto the device. These table entries

were extracted after trading and after deletion of the wallet applications.

Figure 17. Timeline data table entries for the four cryptocurrency wallets from the UFED Touch

Extraction of the Android device.

 The final tree item analyzed for the physical Android device was the File System. The

only file found to contain relevant data not previously discovered was the finsky.xml file in the

com.android.vending sub-item (see Figure 18, boxed in yellow). When selected in Physical

Analyzer, the text view of the file displayed three of the four wallet application names amid a list

of other device applications, which are marked in the red boxes in Figure 18. Based on the code

present (orange underlines), this finsky.xml file was determined to be a record of application

update notifications. It was also deduced that the wallet applications were present in this list

because the default setting for the mobile device was to automatically update installed

applications when connected to a WiFi network and that this update process occurred during

testing. After the installation of the wallet applications, this file and its contents were visible in

the File System tree item in all subsequent stage extractions.

Page 36 of 49

Figure 18. Finsky.xml file within the File System tree item in Physical Analyzer from the UFED

Touch Extraction of the Android device.

IV. C. Virtual Android Device Results

 Given that five separate extractions were necessary after each stage to collect the data

specific to the four wallets, as well as the collective application data in memory, the results of

each are likewise discussed separately.

IV. C. 1. Bitcoin Wallet Results

 From the ADB pull of the Bitcoin Wallet application, five folders were extracted:

app_blockstore, app_log, databases, files, and shared_prefs. The app_blockstore folder contained

one file, blockchain.file, whose data was not human readable when opened in Notepad++. The

app_log folder contained a file labeled wallet.log which was found to be a historical record of the

wallet application’s activity for the most recent emulator session. Of particular interest in this log

file were the blocks of entries for a transaction, which involved the TX message of the Bitcoin

Page 37 of 49

Protocol (see Figure 19). After comparing the activity in a log containing both a sent and

received transaction, it was found that all pertinent entries relating to a transaction included the

transaction hash value. Searching the transaction hash in Notepad++ brought up a Results box

listing all entries containing the hash value (see Figure 20), which, after referring back to the full

log file, were surrounded by the other entries describing the transaction. Searching “tx” similarly

helped with narrowing the area of focus for relevant information within the extensive log file. In

addition to Bitcoin network protocol messages and transaction hashes, the wallet.log file also

provided a variety of IP addresses of network peers. Based on the structure of the Bitcoin

network, it was concluded that these IP addresses are most likely linked to random Bitcoin nodes

which were involved in passing along the information and/or in verifying this singular

transaction.

Figure 19. Transaction entries for the first received payment in the wallet.log file of the Bitcoin

Wallet application.

Page 38 of 49

Figure 20. Results for a search of the first received transaction hash in Notepad++ within the

Bitcoin Wallet wallet.log file.

 Switching back to the ADB pulled files, in the databases folder was address_book.file

and address_book-journal.file, two files which were unreadable in Notepad++ and contained no

data in their tables when opened in DB Browser for SQLite. Into the files folder, three files were

extracted: key-backup-protobuf.file, key-backup-protobuf.p3, and wallet-protobuf.file. None of

these files were readable when opened in Notepad++. Finally, in the shared_prefs folder was a

single file labeled de.schildbach.wallet_preferences.xml. The data in this file was just a short

code script for some of the wallet application preferences. After deletion of the Bitcoin Wallet

application from the emulator, its application data folder ceased to exist and thus could not be

pulled.

IV. C. 2. Hive Wallet Results

 From the ADB pull of the Hive Wallet application, six folders were extracted:

app_blockstore, app_log, cache, databases, files, and shared_prefs. The contents of the first two

folders were the same as those found for Bitcoin Wallet. In the cache folder, two files were

extracted: wallet.-267244447.log and wallet-dump.1791589373.txt. The log file, like the

wallet.log file in the app_log folder, was a historical record of wallet activity. Unlike the

wallet.log file which includes communication information with external sources, this log file

appeared to list activity exclusively internal to the application. There were, however, entries with

Page 39 of 49

similar TX information for a transaction seen in this file as was found in the wallet.log file

(Figure 21).

Figure 21. Entries within wallet.-267244447.log in Notepad++ listing TX information for the

first sent transaction for the Hive Wallet.

 The wallet-dump.1791589373.txt was another log of the wallet activity; however, this file

was more of a summary of the transactions made within the wallet. This summary included the

public wallet key, the amount of bitcoins currently in the wallet and the methods of transactions

in which by that value was reached, followed by more detailed descriptions of these sent and

received transactions. Figure 22 provides a basic view of this log in Notepad++.

Figure 22. Data within the wallet-dump.1791589373.txt file in Notepad++ constituting Hive

Wallet transaction summaries.

Page 40 of 49

 The files in the databases folder included address_book.file, address_book-journal.file,

manifests.file, and manifests-journal.file. Address_book.file contained no data in its tables when

opened in DB Browser for SQLite and address_book-journal.file was unreadable in Notepad++.

When opened in DB Browser for SQLite, manifests.file had a table labeled manifests, which

contained a singular entry with data pertaining to the Hive Wallet application (see Figure 23).

The manifests-journal file was unreadable when opened in Notepad++.

Figure 23. Manifests table in the manifests database from the ADB pull of the Hive Wallet

application.

 Extracted into the files folder were three files: key-backup-protobuf.file, key-backup-

protobug.93, and wallet-protobuf.file. The data of all three files was unreadable when opened in

Notepad++. Finally, in the shared_prefs folder was a single file labeled

com.hivewallet.androidclient.wallet_preferences.xml. The data in this file was just a short code

script for some of the wallet application preferences. After deletion of the Hive Wallet

application from the emulator, its application data folder ceased to exist and thus could not be

pulled.

Page 41 of 49

IV. C. 3. Litecoin Wallet Results

 From the ADB pull of the Litecoin Wallet application, five folders were extracted:

app_blockstore, app_log, databases, files, and shared_prefs. In the app_blockstore folder,

blockchainlitecoin.file was the only file extracted, which contained no readable data when

opened in Notepad++. The app_log folder contained the wallet.log file chronologically

describing the wallet application’s activity. In the databases folder were the files

address_book.file and address_book-journal.file, which, respectively, contained no data in its

tables when opened in DB Browser SQLite and was unreadable in Notepad++. The files folder

contained three extracted files: key-backup-base58litecoin.93, litecoin.peerdb, and wallet-

protobuflitecoin.file. The .93 file, when opened in Notepad++ (see Figure 24), contained data

that essentially gave a warning to the user to protect the private key of the wallet, along with the

actual private key for the wallet and the date and time stamp for when the wallet was created and

opened for the first time. The other two files were not readable when opened in Notepad++ and

the Litecoin.peerdb file could not be opened in DB Browser for SQLite. Lastly, in the

shared_prefs folder was the de.schildbach.wallet_ltc_preferences.xml file, which just contained a

short code script for some of the wallet application preferences. After deletion of the Litecoin

Wallet application from the emulator, its application data folder ceased to exist and thus could

not be pulled.

Figure 24. Data within the wallet-dump.1791589373.txt file in Notepad++: a security warning

and the private key for the Litecoin Wallet.

Page 42 of 49

IV. C. 4. Darkcoin Wallet Results

 From the ADB pull of the Darkcoin Wallet application, five folders were extracted:

app_blockstore, app_log, databases, files, and shared_prefs. The app_blockstore folder contained

the blockchain file, which again was not readable in Notepad++. The app_log folder held the

informative wallet.log file. The databases folder contained the address_book and address_book-

journal files, which, respectively, contained no data in its tables when opened in DB Browser for

SQLite and was unreadable in Notepad++. Into the files folder, key-backup-protobuf.file, key-

backup-protobuf.93, and wallet-protobuf.file were extracted. None of these three files contained

readable data. Finally, in the shared_prefs folder was the

hashengineering.darkcoin.wallet_preferences.xml file, which only contained a short code script

for wallet application preferences. After deletion of the Darkcoin Wallet application from the

emulator, its application data folder ceased to exist and thus could not be pulled.

IV. C. 5. All Application Extraction Results

 In addition to the data extracted from the ADB pulls of the specific wallet applications,

the data extracted from pulling all of the application folders was also analyzed for potential

artifacts. Out of all of the files pulled, only two new database files were found to contain data

pertinent to the wallet applications. The launcher.db file in the com.android.launcher folder

previously discovered in Physical Analyzer was also extracted in the ADB pull and contained the

same entries for the wallets in its favorites table. As had also been observed in the analysis of the

physical Android device, these entries did not exist in the launcher database once the wallet

applications were deleted. The first new file was in the com.android.providers.downloads folder.

In the databases sub-folder, the downloads.db file was opened in DB Browser for SQLite, where

Page 43 of 49

the downloads table was found to contain four entries, one for each of the downloaded wallet

applications. There were numerous columns in this table, of note were the uri, _data, lastmod,

and title columns. URI stands for uniform resource identifier and is a string of characters that

identifies a resource (Masinter, Berners-Lee, and Fielding, 1998). The URI column alone

contains an abundance of information about the wallet applications, such as the source URL of

these downloaded application, the file type of the download, the Google ID of application, and

the Unix Epoch (Unix timestamp) for when the application was first opened on the device. The

_data column indicates where the downloaded file was stored, the lastmod column indicates the

Unix Epoch (Unix timestamp) that the wallet application file was downloaded, and the title

provides the title of the file downloaded. Figure 25 shows a SQL query for the data contained in

these four columns. These table entries were still present in this extracted database after deletion

of the wallet applications from the emulator.

Figure 25. SQL query for uri, _data, lastmod, and title columns in the downloads table of the

downloads database file located in the com.android.providers.downloads folder extracted from
the ADB pull of All Application Data.

 The second file of relevance from the ADB pull of all application data was the

external.db file in the extracted com.android.providers.media folder. The files table contained

four columns with pertinent data: _data, date_added, date_modified, and title. The data in these

columns for the four wallet entries described the path where the downloaded APK file was

saved, the Google ID of the wallet application, and the Unix Epoch (Unix timestamp) of the

Page 44 of 49

wallet application installation and last modified time. Figure 26 shows a SQL query for the data

contained in these four columns pertaining to the four wallet applications. These table entries

were still present in this extracted database after the wallet applications were deleted.

Figure 26. SQL query for _data, date_added, date_modified, and title columns in the files table
of the files database file located in the com.android.providers.media folder extracted in the ADB

pull of All Application Data.

V. Discussion

 After analysis of the physical iOS device, it was concluded that UFED Physical Analyzer

is a tool capable of determining active wallet application presence on a mobile iOS device. After

installation of the bitWallet and CoinPocket wallet applications, many indicators of the wallets’

presence could be gleaned from the UFED memory extractions. After trading, all of these

indicators could still be seen; however, once the wallet applications were deleted from the

device, all references to the wallets and their identifiers ceased to exist. There was also no

transaction information of any sort to be found in the UFED extractions. As for iFunBox, this

tool did allow more direct access to the applications themselves and the data held in their

subfolders. Unfortunately, the data in these folders held nothing of relevance and were no longer

present after deletion of the wallet applications. Like Physical Analyzer, iFunBox was deemed as

useful only for determining active wallet application presence on an iOS device. In summary, the

best approach for harvesting cryptocurrency wallet information on an iOS device would be to

simply open up the wallet application itself and browse the transaction data provided there.

Page 45 of 49

 After analysis of the physical Android device, it was concluded that UFED is an effective

tool for determining both present and past wallet application presence on an Android device.

Physical Analyzer was able to parse out a substantial amount of data that indicate wallet

presence, such as installation date and time stamps, last modified date and time stamps, and even

the email account responsible for the download of the wallet applications onto the device. Unlike

the data harvested by the iOS extraction tools, the wallet indicators captured for the Android

device were still extracted after deletion of the wallet applications from the device. As for

transaction data, again none could be found in the physical Android extractions.

 After analysis of the virtual Android device, it was concluded that the ADB pull

command-line tool is capable of extracting a wealth of valuable transaction information for

active cryptocurrency wallet applications. The most relevant file pulled from each of the

emulator wallet applications was the wallet.log file in the app_log folder. As previously

described, this file was a historical record of the wallet’s activity, the most important of which

were transaction-related communications. By searching the term “tx” in a text-editing program

like Notepad++, transaction data such as time stamps and transaction hashes could be found

within the log file. Whether the transaction was an outgoing or incoming payment could also be

established, as well as the final currency total in the wallet after completion of the transaction.

While the IP addresses found in the wallet log were confirmed to be involved in the transaction,

it could not be definitively said whether they were the source/destination of a transaction or if

they were simply intermediate broadcast nodes for the transaction. The transaction hash is still

valuable, though, because, once known, it can be searched on the blockchain.info website, where

a detailed description of the transaction is publicly available. ADB pull was also capable of

extracting information indicating wallet presence on the mobile device, but only if the wallet had

Page 46 of 49

been installed via a downloaded APK file. These indicators were extracted after installation and

persisted after deletion of the wallet applications.

VI. Conclusions and Forensic Relevance

 Given that cryptocurrencies have been used in illegal transactions, the ability to

forensically evaluate these digital currency systems and their cryptographic wallets is imperative.

This research was successful in determining UFED Physical Analyzer and iFunBox as suitable

tools for extracting wallet application indicators for the bitWallet and CoinPocket Bitcoin wallets

off of an iOS mobile device. These tools, however, were unsuccessful in their ability to extract

wallet data after the applications had been deleted from the mobile device and to harvest any sort

of transaction information.

 For Android mobile devices, it was discovered that the use of UFED Physical Analyzer

against .ufd memory dump files is a reliable tool for determining past and present cryptocurrency

wallet application presence on a device, while ADB pull performs well as an extraction tool for

transaction information from a device with an active wallet application. Of particular interest to

forensic examiners and law enforcement may be the IP addresses and transaction hashes found in

the wallet.log files. If the case is serious enough, the IP addresses could potentially be used as a

lead in the search for the source or destination address of an illicit cryptocurrency transaction.

Likewise with the transaction hashes—if the hash is discovered or disclosed, it can be searched

against the public ledger online. There, transaction data such as the received date and time stamp,

the IP address of the first node to broadcast the transaction, and the input and output values are

provided. Additionally, one can search a specific address against the public ledger to see all past

transactions linked to the address. If an address has been connected to one known illegal

Page 47 of 49

transaction, there is an opportunity to survey past and even monitor future transactions made by

the address.

 Looking beyond the discoveries of this research, further research into the forensic

analysis of cryptocurrency wallets should indubitably be performed. In particular, investigation

into an effective method of extraction of cryptocurrency wallet and transaction information from

iOS devices would be of high value for digital forensic examiners. Tests of the ADB tools on a

physical Samsung Galaxy S4 Android device instead of an emulator should also be conducted, as

well as on devices running newer and older Android OS versions than 4.4.2 and devices beyond

a Samsung Galaxy S4. Finally, a method of extracting transaction information from an Android

device after wallet applications have been deleted would no doubt be of high forensic value.

 As previously discussed, while many studies have been made into the public ledger of

cryptocurrencies, investigation into the cryptocurrency wallets themselves, while of equal

importance, is still deficient. Although the results from this research are a step in that direction,

more tests and analyses must be performed in order to allow forensic examiners and law

enforcement officers to effectively respond to the criminal web expanding within the rapidly

developing realm of cryptographic currencies.

Page 48 of 49

References

1. Virtual Currency: Bitcoin and Beyond, Part 1. [Internet]. Virtual Currency: Bitcoin and
Beyond, Part 1. 2014 [cited 2014 July 10]. CIO Journal. Retrieved from
http://deloitte.wsj.com/cio/2014/06/24/understanding-virtual-currency-bitcoin-and-
beyond-part-1/?mod=wsjcio_hp_deloitte.

2. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M.,
and Stefan Savage. 2013. A fistful of bitcoins: characterizing payments among men with
no names. Proceedings of the 2013 conference on Internet measurement conference (pp.
127-140). ACM.

3. Nakamoto, Satoshi. 2008. Bitcoin: A peer-to-peer electronic cash system. Retrieved from
https://bitcoin.org/bitcoin.pdf.

4. de la Porte, Lodewijk André. 2012. The Bitcoin transaction system. Utrecht. Netherlands.

5. Luther, William J. 2013. Cryptocurrencies, Network Effects, and Switching Costs.
Mercatus Working Paper, Mercatus Center at George Mason University, Arlington, VA,
forthcoming. Retrieved from https://papers.ssrn.com/sol3/papers.cfm.

6. How to Set Up a Wallet. [Internet]. BTC Gear. 2013 [cited 2014 July 9]. Retrieved from
http://bitcoinsimplified.org/get-started/how-to-set-up-a-wallet/.

7. Mining. [Internet]. BTC Gear. 2013 [cited 2014 July 9]. Retrieved from
http://bitcoinsimplified.org/learn-more/mining/.

8. Birukov, A., Khovratovich, D., and Ivan Pustogarov. 2014. Deanonymisation of clients in
Bitcoin P2P network. arXiv preprint arXiv:1405.7418. Retrieved from
http://arxiv.org/pdf/1405.7418.pdf.

9. Bitcoin Developer Guide. [Internet]. Bitcoin Project. 2009 [cited 2014 October19].
Retrieved from https://bitcoin.org/en/developer-guide#full-node.

10. Sprankel, Simon. 2013. Technical Basis of Digital Currencies. Retrieved from
http://www.coderblog.de/wp-content/uploads/technical-basis-of-digital-currencies.pdf.

11. Main Page. [Internet]. Litecoin Wiki. 2011 [cited 2014 July 02]. Retrieved from
https://litecoin.info/.

12. Litecoin. [Internet]. Wikipedia. 2014 [cited 2014 July 02]. Retrieved from
http://en.wikipedia.org/wiki/Litecoin.

Page 49 of 49

13. Duffield, Evan and Kyle Hagan. 2014. Darkcoin: Peer-to-Peer Crypto-Currency with
Anonymous Blockchain Transactions and an Improved Proof-of-Work System. Retrieved
from http://www.darkcoin.io/downloads/DarkcoinWhitepaper.pdf.

14. What Is Darkcoin? [Internet]. Darkcoin. 2014 [cited 2014 June 30]. Retrieved from
http://www.darkcoin.io/intro.html.

15. DarkSend. [Internet]. 2014. Darkcoin Wiki. 2014 [cited 2014 July 10]. Retrieved from
http://wiki.darkc0oin.eu/wiki/DarkSend.

16. Masinter, L., Berners-Lee, T., and R. T. Fielding. 1998. Uniform resource identifier
(URI): Generic syntax. RFC 2396.

17. Intent | Android Developers. [Internet]. Android. [cited 2014 October 15]. Retrieved from
http://developer.android.com/reference/android/content/Intent.html.

