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Abstract 

As their use no doubt increases in the coming years, it is important for those in law 

enforcement and forensics to be familiar with systems of digital currency. Although the infamous 

“Silk Road”—described by some as a black-market Amazon or eBay—was shut down by the 

FBI in late 2013, cryptocurrencies are still being used in illegal transactions. The purpose of this 

research was to examine the most popular wallet applications for the cryptocurrencies Bitcoin, 

Litecoin, and Darkcoin on mobile devices for potential forensic artifacts. Using various forensic 

extraction tools, the data generated from controlled trading was extracted from an Android and 

an iOS device, parsed, and then analyzed for any data that could potentially link a 

cryptocurrency wallet, whether active or deleted, to a specific device.  

 Upon completion of this research, it was determined that the Universal Forensic 

Extraction Device (UFED) Physical Analyzer successfully harvested data indicating present 

cryptocurrency wallet application presence on both the iOS and Android devices, but past wallet 

indicators were extracted only for the Android device. Specifically for the iOS, the iFunBox tool 

was determined to be useful only for confirmation of active wallet application presence on an 

iOS device. Specific to Android devices, the Android Debug Bridge (ADB) pull command-line 

tool could successfully extract a wealth of valuable transaction information for active 

cryptocurrency wallet applications. In addition to transaction data, the ADB pull was also 

capable of extracting information indicating present and past wallet presence on the mobile 

device, but only if the wallet had been installed via a downloaded APK file. 

 Ultimately, the results of this research may serve to aid law enforcement in connecting 

unlawful transactions involving these cryptocurrency wallets on Android devices to implicated 

individual(s) and devices. Further research is still needed to discover a more reliable method for 

extracting cryptographic wallet data from iOS devices. 
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I. Introduction 

 It has been argued that a cover of anonymity increases the likelihood of participation in 

illegal activities. After recent media illustrations of Bitcoin and alt-coins (all coin alternatives to 

Bitcoin), most discussions of these cryptographic currencies bring up this connection between 

criminal intent and anonymity. It is under the false supposition that these cryptocurrencies offer 

true anonymity in electronic transactions that trading websites such as the Silk Road, essentially 

a black-market Amazon or eBay, were created and became popular for criminal dealings. 

Although the Silk Road was shut down by the FBI in 2013 for its part in facilitating the exchange 

of illegal goods for the cryptocurrency Bitcoin, the existence of similar websites supporting 

illegal business resolutely persists.  

Because these currency systems have been affiliated with illegal activities, it is necessary 

for them to be forensically researched. Digital forensics is predominantly concerned with user-

generated data—to search for signs of user activity amid the software and memory of digital 

devices. With peer-to-peer transactions as the fundamental purpose of cryptocurrencies, these 

digital currency systems offer a plethora of user activity. While many have conducted studies on 

the deanonymisation of a currency’s public transaction ledger, less has been done to investigate 

the electronic wallets that users download to hold their coins. Since an electronic wallet is for 

many the prominent access point into the cryptocurrency’s transaction network, a user’s 

electronic cryptocurrency wallet should be an ample store for user-generated data.  

Figure 1 (see Appendix) is a pictorial summary of how a cryptocurrency transaction is 

performed. First, a user installs a wallet onto his computer or mobile device and, either through a 

third-party exchange or a donation from another user, he accumulates a sum of coins (1). To send 

some of these coins to another user, he goes into his wallet application and submits a request to 
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transfer a sum of coins to the next user (2). The payment information is gathered into a block and 

the block is broadcast to the entire user network for verification (3). If the verification is 

successful, the new block is added to the block chain, which is a public ledger of all past 

transactions in the network (4). Finally, the transferred coins are delivered to the new owner’s 

wallet and the transaction is complete (5) (“Virtual Currency,” 2014). 

 Figure 1. A Basic Cryptocurrency Transaction 
 

Cryptocurrencies were initially created to blend the features of physical money into 

existing forms of electronic payments. The use of cryptography in these payments is what 

ensures protection from theft or fraud. Like an exchange of physical money, a cryptocurrency 

transaction does not explicitly identify the parties involved (Meiklejohn, Pomarole, Jordan, 

Levchenko, McCoy, Voelker, and Savage, 2013). Unlike cash, however, cryptocurrencies 

transactions also work like an electronic payment in that an outside third-party intermediary is 

required to safeguard honesty from both sides during the transfer. While cryptocurrencies do 

require mediation, they are unique in that the responsibility of validating transactions rests with 

the entire user network instead of an outside financial institution. So while a real-world identity 

is never tied to a transaction or an address, every transaction that occurs is visible to every user 

in the network. It is presumably the misinterpretation of these pseudo-anonymous transactions as 

a truly anonymous process that sparks criminal interest in these currencies. 
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Although used currently by only a small portion of the national and world populations, 

cryptocurrencies are growing in prevalence and thus must be researched and understood. In this 

particular research, the cryptocurrency systems of interest are Bitcoin, Litecoin, and Darkcoin. 

Although each currency has its unique features, which are discussed in detail in Section II, their 

general protocol is the same given that the latter two are based upon the open-source code of 

Bitcoin. The theory driving this research is that, as a digital system, a cryptographic wallet will 

leave artifacts related to its presence and activity in the memory of a mobile device that can be 

found after forensic investigation. The work here will essentially be a discovery procedure to 

investigate the potential wealth of user information generated by the existence of cryptocurrency 

wallet software on iOS and Android mobile devices.  

The methodology for this research involves the trading of the three cryptocurrencies 

Bitcoin, Litecoin, and Darkcoin. These cryptocurrencies were researched using a physical Apple 

iOS mobile device, a physical Samsung Galaxy S4 Android device, and an emulated Android 

mobile device in a controlled lab setting. As is described more fully in Section III, wallet 

application data was forensically extracted from the devices at four different stages in the testing 

process, throughout which the presence and use of the wallet applications on the devices 

changed. Upon completion of trading and imaging, the collected data of the mobile devices was 

analyzed with a variety of forensic software for information that could potentially link a 

cryptocurrency wallet or transaction to a specific device or real identity. The results of these 

analyses are detailed in Section IV. Section V provides a conclusive overview of this research, 

while Section VI offers suggestions of future research prospects and ways in which digital 

forensic examiners can use the results of this research in the investigation of cases involving 

cryptocurrency use on mobile devices. 
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II. Background 

 Provided here is an in-depth overview of the unique features that distinguish Bitcoin, 

Litecoin, and Darkcoin cryptocurrencies. Given that Litecoin and Darkcoin grew out of the 

operational skeleton of the Bitcoin protocol, Section II.A describes the underlying causes for the 

creation of a cryptocurrency system, as well as how “gold standard” Bitcoin functions, while 

Sections II.B and II.C detail why Litecoin and Darkcoin were subsequently created from the 

Bitcoin protocol and how they are unique. Describing these differences is important in further 

understanding how each of these currencies and their components can be used and potentially 

manipulated. Since it is possible that forensic analysis may also vary with each type of currency, 

it is crucial for investigators to be familiar with the distinct features of these digital systems.  

 

II. A. Bitcoin Features  

 Bitcoin is a virtual currency that makes use of cryptography in the creation and 

management of its digital currency system. Created by the pseudonymous Satoshi Nakamoto and 

launched in early 2009, the main drive behind the creation of Bitcoin was to replace existing 

virtual commerce methods, which relied heavily on financial institutions to process electronic 

transactions in a trust-based model, with a system in which payments are moderated by an 

unaffiliated and more reliable third party: cryptographic proof (Nakamoto, 2008). To accomplish 

this, Bitcoin operates in a decentralized peer-to-peer network, meaning that instead of a single 

entity holding responsibility for payment verification, consensus of the entire Bitcoin network 

determines the validity of each payment (de la Porte, 2012). 

 There are a numbers of ways in which an individual can become involved in the Bitcoin 

network. On either a personal computer or a mobile device, a user can trade Bitcoins for goods 
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and services with other users or participating vendors; he can trade in coins for traditional 

currencies on a Bitcoin exchange platform; he can donate to a political party, charity, or a friend; 

or he can take on the role of a miner and lend his resources to the verification of other users’ 

transactions (Luther, 2013). To begin, a user installs the open-source Bitcoin client—a Bitcoin 

wallet—onto his computer(s) to manage his account. There are two types of wallets available for 

download: a software wallet, which is installed straight onto a device, or a web wallet, which is a 

wallet hosted by a third party (“How to Set Up a Wallet,” 2013). Through a wallet, a user is able 

to receive, store, and send bitcoins.  

 An individual bitcoin is actually a chain of digital signatures (Nakamoto, 2008). These 

signatures are hash values that represent each sequential transfer of a coin from one user’s public 

key to another. As a coin is transferred from user to user, the coin develops a unique chain of 

signatures that starts with the creation of the coin and has an end that changes as the coin 

continues to be passed along. A user’s coins are held in an encrypted wallet, where his sets of 

private and public key pairs are also stored (Luther, 2013). When a user goes into his electronic 

wallet to send coins, his unique secret signing key (private key) is used to generate a SHA-256 

hash composed of past and future transaction information. This first hash is the sender’s digital 

signature. The combination of this signature with the hash of the previous transaction and the 

recipient address is collectively called a coin transaction. Because each transaction includes a 

reference to the previous one, the sequence of transactions forms a chain, which is recorded in 

the coin (Luther, 2013). The coin transaction is next combined with the public key of the receiver 

to ensure it can only be opened by the receiver. Finally, the bundle is cryptographically hashed 

once more into what becomes a new block (Luther, 2013). A block is synonymous for a 
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transaction. This process of generating a Bitcoin block is pictographically summarized in Figure 

2 (red denotes sender components and green denotes receiver). 

 
Figure 2. Cryptographic Processing of a Bitcoin Transaction 

 
To ensure that a bitcoin is legitimate in terms of ownership, a block must be verified 

against the public ledger (Luther, 2013). This verification is not performed by one user, however. 

The information in the new block is broadcast to the entire network of users for verification 

(Luther, 2013). To check the validity of the block, and ultimately complete the transaction, it 

must be added to the official block chain—a globally visible and accepted ledger consisting of 

all past transactions—by a Bitcoin miner (Luther, 2013). Put simply, mining is the term used for 
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the process of computing complex hash calculations in order to verify Bitcoin transactions 

(“Mining,” 2013). During mining, the new block is compared to the historical list of transactions 

on the ledger. In order for the block to be confirmed, the current end of the transaction chain in 

the submitted coins must point to the sender as the rightful, current owner. 

 If ownership, and thus the block, is confirmed to be valid, the block is created and the 

reward—a sum of new bitcoins—for finding that block goes to the miner whose work produced 

the correct hash (Meiklejohn, Pomarole, Jordan, Levchenko, McCoy, Voelker, and Savage, 

2013). The new block is then broadcast to the network so that the public ledger can be updated. 

Finally, the payment is permitted to pass on to the receiver. With her wallet, the receiver decodes 

the hash information using her own private key and thus ownership of the coin is successfully 

transferred to her (Luther, 2013). Once an entirely new payment is submitted and a newly 

created block references this block as the previous one in the historical chain, the block is fully 

accepted as part of the public block chain (Meiklejohn, Pomarole, Jordan, Levchenko, McCoy, 

Voelker, and Savage, 2013). 

 The uniformity required of a currency system mediated by a widespread network of peers 

depends on a sound method of communication. Though simple, the Bitcoin protocol effectively 

provides reliable interconnectedness and harmony to its dynamic peer-to-peer network. Peers in 

the Bitcoin network connect to one another over an unencrypted TCP channel. The Bitcoin 

protocol implements propagation and discovery mechanisms through the use of what are called 

messages. A message is essentially a communication flag whose name is specific intent. Nodes 

send and receive these messages from one another in order to spread a variety of requests 

through the entire network. To circulate addresses, for example, a node can request a list of 

neighboring peers in the network using GETADDR messages, as well as convey its own list of 
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known addresses using the ADDR message. Collectively, these messages are used for peer 

discovery, connecting to peers, block broadcasting, and transaction broadcasting. Of particular 

interest to this research is the TX message, which is used to describe transactions. There are 

multiple steps from the start to finish of a transaction broadcast. First, the sender submits an INV 

(inventory) message with the transaction hash. If the hash passes the validity checks on the 

receiver’s end, the receiver sends back a GETDATA message.  The sender then transmits the 

real transaction in a TX message. When the transaction reaches the receiver, he broadcasts an 

INV message to his peers so that the block chain can be updated (Birukov, Khovratovich, and 

Pustogarov, 2014; “Bitcoin Developer Guide,” 2009).  

 

II. B. Litecoin Features  

 Marketed as the “silver to Bitcoin’s gold” cryptocurrency status, Litecoin protocol 

predominantly mirrors that of Bitcoin. While accepting and even promoting its second place 

status since its debut in October 2011, Litecoin’s creator, Charles Lee, did create Litecoin to 

have features which he believed to be better than those offered by Bitcoin. His aspiration for 

Litecoin was to be a faster and more energy efficient cryptocurrency. To distinctly differentiate 

Litecoin from Bitcoin, three parameters were altered: the number of coins to introduce into 

circulation, the rate of block generation, and the hashing algorithm utilized (Sprankel, 2013). 

 Instead of a cap of 21 million coins like Bitcoin, the limited supply of Litecoin sits at 84 

million coins, which is four times the number of coins than the Bitcoin network will issue 

(Sprankel, 2013). By having more coins available for circulation, smaller divisions of coins can 

theoretically be made and thus smaller transaction values become more feasible. This is 
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particularly attractive for merchants that operate on many small transactions being made at a 

high rate (“Main Page,” 2011).  

 The quicker transaction time offered by Litecoin is another feature that aids in the 

practicality of small value trades. In just two and a half minutes, as opposed to ten minutes with 

Bitcoin, a transaction will be put out to the network, undergo verification, and complete the 

transfer from sender to recipient. A faster confirmation time means less anxiety for both trading 

parties and also a much smaller window for potential hackers to interrupt the transaction chain 

(“Main Page,” 2011).   

 Finally, Litecoin makes itself available and useable to a broader scope of users with its 

mining capabilities. By using the hashing algorithm called scrypt to provide the cryptographic 

security and complexity to mining efforts, coins can be generated and transactions verified by 

standard computers with consumer-grade hardware which most individuals already own (“Main 

Page,” 2011). In addition to its capacity for attracting more miners, Litecoin’s use of scrypt 

means that this mining system does not interfere with Bitcoin’s system. If a capable user so 

desires, he may put his machines to mine both cryptocurrencies simultaneously. In this way, 

Litecoin aligns itself more as a currency complimentary to Bitcoin than as a true competitor 

(“Litecoin,”, 2014). 

 

II. C. Darkcoin Features 

 Released in March 2013, while Darkcoin is also an offshoot of Bitcoin, it is radically 

different than Bitcoin and any other cryptocurrency in its privacy design.  Formulated with the 

purpose of providing true anonymity to transactions, Darkcoin eliminates the capacity to even 

link a transaction with the correct corresponding source or destination addresses. As creator Evan 
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Duffield writes in the white paper of Darkcoin, his currency can solve the blockchain’s inherent 

inability for true privacy with the implementation of DarkSend (Duffield and Hagan, 2014). 

 The basic Darkcoin system operates just as Bitcoin does; however, the verification 

method of Darkcoin transactions is unique with the availability of DarkSend. It is an optional 

implementation available to Darkcoin users and can be deactivated at any time per the user’s 

wishes (Duffield and Hagan, 2014).  The innovation of DarkSend lies in its ability to mix the 

inputs and outputs of transactions traveling through the DarkSend payment system (“What is 

Darkcoin?”, 2014). With DarkSend enabled, a payment request is automatically split into smaller 

coin denominations and then combined with other split transactions of similar size into pools of 

larger transactions. A master node for each pool is then randomly elected to serve as the 

transaction mediator for that session. This master node is a user who has volunteered their 

resources and 1000 Darkcoins for the privilege of assuming the role. The steep requirement aims 

to keep the master nodes honest and a reward of 20% of the newly mined coins provides 

incentive for miners to continue offering their services (“DarkSend,” 2014).  

 Once the master node is established, the mixing begins. Since all inputs in the pool are 

equal in size, all outputs are virtually the same and can therefore be shuffled around 

interchangeably. A scheme involving blind signatures is utilized, though, to ensure the outputs of 

the pool will belong only to participants in that pool. This tactic additionally ensures that no user, 

not even the master node, knows which outputs are linked to which inputs. Once the obfuscation 

process is complete, the master node presents the finalized transactions to the participants. If 

each participant confirms their respective inputs and outputs amounts as correct, the transactions 

are signed and the master node broadcasts the new blocks to the network, then resigns its 
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position. Anyone who views the block chain thereafter will see the completed payments but will 

not be able to match senders to receivers (Duffield and Hagan, 2014).  

 Other unique features of Darkcoin include the use of a highly secure hashing algorithm 

X11, a total transaction time of 2.5 minutes, and a maximum supply of approximately 22 million 

coins (“What is Darkcoin?”, 2014). In totality, Darkcoin is the first—and currently only—

cryptocurrency to boast of privacy-centered operations since the creation of Satoshi Nakamoto’s 

Bitcoin (Duffield and Hagan, 2014). 

 

III. Methodology 

 To investigate the potential forensic artifacts left behind in mobile device memory by 

cryptocurrency wallets after controlled trading, the most popular wallet applications available for 

Bitcoin, Litecoin, and Darkcoin were considered for iOS and Android mobile devices. The 

wallets were tested in the most basic, user-only condition, so blockchains were never 

downloaded, addresses were not saved, coins were not publicly requested, only one address was 

used per wallet, and the wallets were not backed up. 

 The basic investigative premise was to extract the application data of each wallet from 

the two types of mobile devices at four different points in the installation and trading processes: 

(1) after a factory reset of the phone and prior to the installation of the wallet applications, (2) 

after wallet installation and before trading, (3) after completion of controlled trading of the 

currencies, and (4) after the wallet applications had been deleted from the device. Comparison of 

the data from stages 1 and 2 allow wallet-specific data to be distinguished from other software 

and application data native to the mobile device. Comparison of 2 and 3 permits the distinction 

of any transaction-specific alterations to the devices’ memory. Comparing data from stage 3 to 4 
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will reveal if any indicators of the wallet applications’ presence on the device still exist after 

deletion of the wallet applications.  

 All extracted data was saved onto a Seagate Barracuda 1 (one) terabyte hard drive that 

had previously been forensically wiped and verified. A DiskCypher SATA 256 with an 

encryption key was attached to the hard drive to protect the contents of the hard drive. Using 

current forensic analysis tools and software, these extractions were gleaned for any links between 

user-related information and the data pulled from the application software.  

 

III. A. Physical iOS Device 

 To test the iOS operating system, an Apple iPhone 4 (Model A1332) running iOS version 

7.1.1 was used.  

 

III. A. 1. iOS Extraction 

 In each of the four stages of the experiment, two methods of data extraction from the iOS 

device were used. The first was Cellebrite UFED Physical Analyzer (version 3.9.8.7) software. 

After opening the application on a desktop computer, the mobile device was plugged into one of 

the USB ports using the Cellebrite Tip T-110 attached to Cable A. In the application Graphic 

User Interface (GUI), the Advanced Logical extraction was selected and both extraction Method 

1 and 2 were performed. The extracted images were saved for later analysis. 

 The second method for extraction was iFunBox, an open-source app/file manager for iOS 

devices. Immediately after extraction in UFED Physical Analyzer for each stage, iFunBox was 

used to actively examine and extract application data from the still-connected iPhone. The File 

System folder was extracted using the iFunBox’s Dump feature and saved to the encrypted hard 
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drive. Since iFunBox is fundamentally an active file/app managing tool, analysis of the wallet 

applications could only be performed for Stages 2 and 3, when the wallets were still installed on 

the device.  

For both methods of extraction, all collected data was saved via the Dump option (if 

possible) or by screenshot to the encrypted hard drive.  

 

III. A. 2. iOS Stage 1: Device Set-Up 

To ensure all data found on the mobile device was exclusively from the experiment, the 

phone was reset to factory settings. During the set-up process after resetting the phone, the 

device was configured to connect to the lab’s private wireless network and a test email address 

was saved for future use in the iTunes App Store. Once the set-up process was complete, the 

phone was imaged with UFED Physical Analyzer and examined iFunBox.  

 

III. A. 3. iOS Stage 2: Installation of Wallet Applications 

Opening the iTunes App Store on the home screen of the device, the following Bitcoin 

wallet applications were installed onto the device: bitWallet (v. 1.5) by Sollico Software and 

Coin Pocket (v. 1.1.0 ) by Enriquez Software LLC. Litecoin- and Darkcoin-specific wallets 

could not be tested on the iOS in this project due to the ban Apple had placed on apps involving 

the transmission of virtual currencies in early 2014. This ban was lifted the first week of June 

2014, less than a month before the beginning of this research, and so the availability of wallets 

for any currency that allowed the transference of coins and not simple fund-monitoring was 

scarce.  
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Both wallets were installed and operated as user-only; therefore, the block chains were 

never downloaded to the devices and no mining was performed. Once the wallets were 

successfully installed, each application was tapped to start. Having been opened once, the mobile 

device was then imaged by UFED Physical Analyzer and examined in iFunBox. 

 

III. A. 4. iOS Stage 3: Trading 

 Trading occurred over a private wireless Internet connection. Trades were made with 

both a known user running desktop wallet applications and the physical Android device 

maintained in this experiment. A log in Microsoft Word was kept to record important transaction 

information such as sender/recipient addresses, transferred amount, the transaction hash, and the 

date and time stamps. After each wallet had a minimum of two received and two sent 

transactions, the device underwent extraction and examination.  

 

III. A. 5. iOS Stage 4: Wallet Application Deletion 

 After each wallet application completed two send and two receive requests, the wallets 

were emptied in a final transaction to send the coins back to their owner. Once successfully 

emptied, the applications were deleted by pressing down on the icon until all of the app icons 

begin to wiggle and an encircled “X” appeared in the top right corner of each icon. The “X” for 

both the bitWallet and Coin Pocket wallet applications were selected and confirmed in the pop-

up window for uninstallation. Once uninstalled, the mobile device data was extracted with UFED 

Physical Analyzer and examined in iFunBox.  

 

III. A. 6. iOS Analysis 
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To analyze the collected memory data from the iOS, UFED Physical Analyzer was used 

to examine the extracted .ufd files. From the encrypted hard drive, the files were opened in 

UFED Physical Analyzer to decode and parse the collected data. Once parsed, all extracted 

information listed in the left project tree pane in the GUI were examined for potential forensic 

artifacts. In particular, the Analyzed Data, the Data Files, Timeline, and File Systems tree items 

and all sub-items under each were assessed. Any extracted databases were examined both in the 

data view in Physical Analyzer and in the open-source tool DB Browser for SQLite. All relevant 

data found was dumped as a file onto the Seagate hard drive and/or was documented with a 

screen capture. 

As described previously, iFunBox is more of an active examination tool.  For each stage, 

all items listed in the left project tree pane in the GUI were examined for potential forensic 

artifacts while the phone was connected to the computer. As for extracted data, the File System 

folder from all four stages along with the specific wallet application files from Stages 2 and 3 

were later analyzed using Notepad++ and DB Browser for SQLite. 

 

III. B. Physical Android Device 

To test the Android operating system, a Samsung Galaxy S4 (Model GT-I9500) running 

Android OS version 4.4.2 was used. No SIM card was inserted.  

 

III. B. 1. Physical Android Extraction 

 In each of the four stages of the experiment, data extraction from the Android device was 

performed using a Cellebrite UFED Touch Ultimate hardware device. The mobile device was 

connected to the UFED unit using Cable A with Tip T-100. Once plugged in, the UFED 
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automatically detected the device and a prompt window appeared listing extraction options for 

CDMA and GSM models of the Samsung GT-I9500 Galaxy S4 device. Ultimately, all possible 

extraction types targeting all possible content types for both CDMA and GSM versions of the 

phone were performed to ensure all potential data was collected. For the CDMA model, the only 

extraction option was a Logical Extraction. For the GSM version, extraction options included a 

Logical Extraction, a File System Extraction with “Android Backup – NO Shared,” and a File 

System Extraction with “Android Backup-with Shared.” The options of “no shared” and “with 

shared” refers to the exclusion or inclusion of existing shared preferences for applications in the 

backup. 

Since the mobile device was running above Android version 4.2, the settings on the 

device had to be changed to activate Developer Options, allow Android/USB Debugging, and 

configure the screen to “Stay Awake” while on. The instructions for making these changes were 

provided by the UFED device before the extraction began. They can also be found on the 

Android Developers website. 

 All extractions were initially saved to a removable USB flash drive inserted into the 

UFED target port. Once all extractions for a stage were completed, the USB was plugged into the 

desktop computer and the extracted folders were cut from their place on the flash drive and 

pasted onto the encrypted Seagate hard drive for later analysis in UFED Physical Analyzer. 

 

III. B. 2. Physical Android Stage 1: Device Set-Up 

 To ensure all data found on the mobile device was exclusively from the experiment, the 

phone was reset to factory settings. During the set-up process after resetting the phone, the 

device was configured to connect to the lab’s private wireless network and a test email address 
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was saved for future use of the Google Play Store. Once the set-up process was complete, the 

phone was imaged with UFED Touch. 

 

III. B. 3. Physical Android Stage 2: Installation of Wallet Applications 

 From the Google Play Store icon on the home screen, the following wallet applications 

were installed onto the device: Bitcoin Wallet (version 3.53) by Andreas Schildbach, Hive 

Bitcoin Wallet (v. 0.3.3.3.46) by Hive Labs, Litecoin Wallet (v. 3.30.9) by Litecoin Project, and 

Darkcoin Wallet (beta) (v. 1.0.1) by Hash Engineering Solutions. Each wallet was installed and 

operated as user-only; therefore, the block chains were never downloaded to the devices and no 

mining was performed. Once the wallets were successfully installed, each was tapped to start. 

Having been opened once, the mobile device was again imaged using the UFED Touch.   

 

III. B. 4. Physical Android Stage 3: Trading 

 Trading occurred over a private wireless Internet connection. Trades were made with 

both a known user running desktop wallet applications and the physical iOS device maintained in 

this experiment. A log in Microsoft Word was kept to record important transaction information 

such as sender/recipient addresses, transferred amount, the transaction hash, and the date and 

time stamps. After each wallet had a minimum of two received and two sent transactions, the 

device underwent extraction. 

 

III. B. 5. Physical Android Stage 4: Wallet Application Deletion 

 After each wallet application completed two send and two receive requests, the wallets 

were emptied in a final transaction to send the coins back to their owner. Once successfully 
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emptied, the applications were deleted using Android’s built-in Application Manager. To access 

it, the Settings app was opened, the More tab was tapped, and Application Manager was selected. 

In Application Manager was a list of the currently installed apps. To uninstall the wallet 

applications, the icon of each was tapped and then the Uninstall button at the top of the 

subsequent screen was selected. Once all four wallet applications were uninstalled, the mobile 

device data was extracted with the UFED Touch. 

 

III. B. 6. Physical Android Analysis 

 To analyze the collected memory data from the Android device, UFED Physical 

Analyzer was used to examine the extracted .ufd files. From the encrypted hard drive, the files 

were opened in UFED Physical Analyzer to decode and parse the collected data. Once parsed, all 

extracted information listed in the left project tree pane in the GUI were examined for potential 

forensic artifacts. In particular, the Analyzed Data, the Data Files, Timeline, and File Systems 

tree items, as well as all sub-items under each. Any extracted databases were examined in both 

the Data view pane in Physical Analyzer and in the open-source tool DB Browser for SQLite. 

All relevant data found was dumped as a file onto the Seagate hard drive and/or was documented 

with a screen capture. 

 

III. C. Virtual Android Device 

 To run the second method of extraction for the Android operating system, a physical 

mobile device was no longer available and so a virtual Android device was used. The open-

source tools Genymotion (v. 2.2.2) and Oracle VM VirtualBox (v. 4. 3. 14) were downloaded to 

create this virtual device (emulator). Mirroring the device used in the first extraction process, two 



Page 21 of 49 
 

virtual Samsung Galaxy S4 devices running Android OS version 4.4.2 were created for this 

portion of the experiment.  

 

 III. C. 1. Virtual Android Extraction 

 A component of the Genymotion Android Emulator that proved useful for extracting 

application data in this project was the Genymotion Android tool package. Automatically 

downloaded and available with the installation of Genymotion, these command-line tools are 

similar to those used for Android SDK, which are a set of development and debugging tools. The 

specific tool used in this project was the Android Debugging Bridge (ADB) pull command.  

 In order to use ADB pull on the virtual devices, the emulators had to be open and running 

on the computer. Additionally, the unique Google ID for each wallet was needed in order to 

direct the tool to pull the data from a specific wallet application. This ID was found by searching 

the wallet application name on the Google Play Store website and then seen in the URL of the 

application details page, as shown in Figure 3.  

 
Figure 3. Location of the Google ID of an application (red) within its Google Play Store URL. 
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 To access the ADB tools, a command prompt was opened and navigated to the 

C:\Program Files\Genymobile\Genymotion\tools directory. This directory is the default location 

selected for storing the Genymotion tools during the installation process. The data unique to each 

wallet application was then pulled from the emulator and directed to a designated output 

directory on the local computer using the command syntax displayed in Figure 4. A successful 

ADB pull was confirmed by comparing the number and names of the files seen in the specified 

output directory open in a Windows Explorer GUI to what was printed in the command line 

window output (Figure 5).  

 
Figure 4. ADB pull command syntax to extract Android Bitcoin Wallet application data. 
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Figure 5. Command prompt output of a successful ADB pull of the Bitcoin Wallet application 

data. 
 
 

Since application-specific data could only be pulled from an installed application, 

however, no wallet application data was extracted in Stage 1. All other application data present 

on the emulator, however, was pulled after each of the four stages and saved to the encrypted 

hard drive. 

 
 
III. C. 2. Virtual Android Stage 1: Device Set-Up 
 
 After successful installation of Genymotion and Oracle VirtualBox, Genymotion was 

started. Two new virtual devices were created with the specifications listed in Table 1.   

Specification Setting 
Android version 4.2.2 
Device model Samsung Galaxy S4 
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Memory size 2048 MB 
Data storage capacity 16,394 MB 

Table 1. Genymotion Android Emulator Set-Up Specifications 
 

Once the emulators were successfully created, they were ready to use. After powering on 

an emulator, it was necessary to check that wireless capabilities were enabled in order to 

successfully download the wallet applications and make trades. If the gray wireless symbol was 

visible in the top right corner of the emulation window, it was confirmed that the emulator was 

properly set up. To confirm connectivity in a second way, the browser application was opened 

and a Google search was made. If the search completed and displayed results, it was determined 

that the device was properly configured. 

 As with the physical Android device, the emulator required activation of Developer 

Options so that USB Debugging could be enabled to successfully extract application data. 

Navigation through the settings to make this change was the same as with the physical device 

and is available for reference on the Android Developers website 
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III. C. 3. Virtual Android Stage 2: Installation of Wallet Applications 

 Before the wallet applications could be installed, a Security setting in the emulator had to 

be changed. Clicking on the Settings icon within the emulator, the Security option was selected 

from the Options menu. Under Device Administration, the box next to “Unknown Sources” was 

checked to allow installation of apps from unknown sources onto the device.  

 To install the applications onto the emulators, a third-party website was used to download 

the wallets’ Android application package, or APK file, which contained the application software. 

Clicking on the Browser icon on the emulator home screen, the following URL was typed into 

the address bar: apps.evozi.com/apk-downloader. The Google ID of a wallet (obtained in Section 

III. C. 1.) was typed into the input box on the page and then the “Generate Download Link” 

button was clicked. After the package details appeared for the designated Google ID, the “Click 

here to Download” button was clicked. This process is illustrated in Figure 6. Once the 

application .apk file was successfully downloaded, the application was installed onto the device 

from the Downloads menu. 

 
Figure 6. APK Downloader: Details of the Bitcoin Wallet APK File. 
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  After all four wallet applications were downloaded and installed onto the device, the 

applications were clicked open since it was discovered that the ADB pull command could not 

extract any wallet application data from the emulator if the application had never been opened. 

With the emulator open and running, the first ADB pull extraction of each wallet application was 

made and saved onto the Seagate hard drive.  

 

III. C. 4. Virtual Android Stage 3: Trading 

 Trading occurred over a private wireless Internet connection and was made between the 

two Samsung Galaxy S4 emulations running simultaneously. A log in Microsoft Word was kept 

to record important transaction information such as sender/recipient addresses, transferred 

amount, the transaction hash, and the date and time stamps. After each wallet had a minimum of 

two received and two sent transactions, the device underwent extraction. 

 

III. C. 5. Virtual Android Stage 4: Wallet Application Deletion 

 After each wallet application completed two send and two receive requests, the wallets 

were emptied in a final transaction to send the coins back to their owner. Once successfully 

emptied, the applications were deleted in the same way that the apps were deleted on the 

physical Android device: using Android’s built-in Application Manager. To access it, the 

Settings app was opened, the More tab was tapped, and Application Manager was selected. In 

Application Manager was a list of the currently installed apps. To uninstall the wallet 

applications, the icon of each was tapped and then the Uninstall button at the top of the 

subsequent screen was selected. Once all four wallet applications were uninstalled, all 

application data was extracted with ADB pull.  
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III. C. 6. Virtual Android Analysis 

 To analyze the collected memory data from the ADB pull extractions, Notepad++, an 

open-source code editor, and DB Browser for SQLite were used. All files extracted from the 

ADB pull were opened in Notepad++ to review and keyword search if the file was human-

readable. All extracted database files were opened in DB Browser for SQLite to assess the tables 

for entries relating to the wallet applications. If relevant data was found, the database was 

subsequently queried for specific wallet application data. All relevant data found in any program 

was saved onto the Seagate hard drive and/or was documented with a screen capture. 

 

IV. Data and Results 

With both the physical iOS and Android mobile devices, after loading the UFED 

extraction files in Physical Analyzer, all extracted components visible in the Project Tree were 

analyzed. In particular, the Analyzed Data, the Data Files, Timeline, and File Systems tree items 

and all sub-items under each. In addition to examination in UFED Physical Analyzer, select 

database files were also analyzed in DB Browser for SQLite. 

For the physical iOS device, active analysis using iFunBox was performed while the 

phone was still attached to the computer for each stage. In these examinations, information listed 

in the left project tree pane in the GUI was examined for potential forensic artifacts. From Stages 

2 and 3, the File System folder and all wallet application files dumped from iFunBox were 

analyzed in Notepad++.  

For the virtual Android device, all files extracted with ADB pull were analyzed in either 

Notepad++ or DB Browser for SQLite. The data pulled from the specific wallet applications in 

Stages 2 and 3, along with all of the application data on the emulator in all four stages, were the 



Page 28 of 49 
 

items analyzed by these methods. It was found that the content of these pulls only pertained to 

the activity made in the active session during which the pull was made and was erased after the 

emulator was shut down.  

 

IV. A. 1. Physical iOS Results – UFED Physical Analyzer 

 Under the Analyzed Data tree item in Physical Analyzer, the only sub-item with any 

relevant artifacts was Installed Applications. In Stages 2 and 3, the Extraction table in the data 

display contained entries for bitWallet and CoinPocket (see Figure 7). A particularly key value in 

the table for each application was its Identifier. In extraction tables encountered further on in the 

analysis, these identifiers were found again. While these data entries were extracted in Stages 2 

and 3, they did not persist after the wallet applications were deleted in Stage 4. 

 
Figure 7. Installed Applications data table entries for bitWallet and CoinPocket from UFED iOS 

Advanced Logical Extraction. 
 

 Within the Data Files tree item, two categories were of interest: Configurations and 

Databases. In both Method 1 and 2 of the Advanced Logical extractions, the Configurations sub-

item contained an entry with the details of a .plist file for the CoinPocket wallet, as shown in 

Figure 8. A plist is a “property list” file used by iOS to store a user’s settings or information 

about bundles and applications. These entries list the storage path of the .plist configuration files, 

as well as the Created, Last Modified, and Last Accessed date and time stamps, which were 

congruent with the true installation action of the wallet applications in the test. No configuration 
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files existed for bitWallet in any of the four stages. As with the Installed Application data entries, 

these CoinPocket entries were extracted after wallet installation, but not after deletion of the 

wallets.  

 
Figure 8. Device configuration files for CoinPocket from UFED iOS Advanced Logical 

Extractions. 
 

Under the Databases category, two databases with the CoinPocket identifier were 

extracted after installation of the wallets (Figure 9). These database files were only seen in the 

Method 2 extraction, however. The first is a cache database and the second is a local storage file. 

After inspection in UFED and DB Browser for SQLite, neither database file was found to 

contain relevant data. The Last Modified date and time stamps seen in the entries were updated 

from Stage 2 to 3. Again, no database files for bitWallet were found and these database files for 

CoinPocket were removed after deletion of the wallet applications from the mobile device. 

 
Figure 9. Database files for CoinPocket from Method 2 UFED iOS Advanced Logical 

Extraction. 
 

 Physical Analyzer was not able to extract any data for the Time Line tree item in any of 

the iOS .ufd extraction files. Additionally, analysis of the File Systems tree item revealed no 

further artifacts of forensic relevance.  
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IV. A. 2. Physical iOS Results – iFunBox 

 While active examination of the iOS mobile device after each stage in iFunBox yielded 

no relevant data, analysis of the extracted File System and wallet-specific files in Notepad++ did 

turn up some pertinent data.  

 In the wallet application dump of bitWallet, five folders were extracted—bitWallet.app, 

Documents, Library, StoreKit, and tmp. In the Documents folder was an alerts.file file. When 

opened in Notepad++, this file was found to contain the public address string of the wallet 

installed on the device (see Figure 10). In the same folder was another file: wallets.v1. This file 

listed not only the public address (key) of the wallet, but the private key as well (see Figure 11). 

The other folders and files in the extractions of bitWallet did not hold relevant forensic data.  

 
Figure 10. bitWallet: Content of the Alerts.file File Extracted by iFunBox. 
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Figure 11. bitWallet: Content of the Wallet.v1 File Extracted by iFunBox. 

 
 In the wallet application dump of CoinPocket, again five folders were extracted: 

CoinPocket.app, Documents, Library, StoreKit, and tmp. None of the files in in these folders 

held relevant forensic data.  

 In the Raw File System dump of the mobile device from Stage 3, two folders containing 

data related to the wallet applications were extracted: Purchases and Downloads. The Purchases 

folder contained a handful of .plist files, but none of them were related to the wallet applications. 

The Downloads folder contained a SQLite database file labeled downloads.28.sqlitedb. When 

opened in DB Browser for SQLite, the database file contained a table labeled Purchase with two 

entries. Within this table was encoded_data and encoded_response columns whose cells 

contained binary data which, when interpreted, listed the names of the ID of the wallet 

application downloaded, as well as the iTunes name of the individual who purchased the wallet 

application, respectively (see Figures 12 and 13). No relevant date and time stamps were found. 

These table entries were still extracted after the wallet application was deleted from the mobile 

device. 
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Figure 12. Wallet Application Name in the Binary Interpretation of the Dowloads.28.sqlitedb 

Encoded_Data Column. 
 

 
Figure 13. iTunes Name in the Binary Interpretation of the Dowloads.28.sqlitedb 

Encoded_Response Column. 
 

IV. B. Physical Android Device Results 

 The Logical extractions yielded no data when opened in UFED Physical Analyzer.  

 The Shared File System extraction did not contain any relevant information that was not 

already included in the No Shared File System extraction. Thus, all results obtained were from 

analysis of the No Shared File System extractions. 
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 Under the Analyzed Data tree item in Physical Analyzer, the only sub-item with any 

relevant artifacts was Installed Applications. After installation of the wallets, the extraction table 

in the data display contained entries for the Bitcoin Wallet, Hive Wallet, Litecoin Wallet, and 

Darkcoin Wallet applications (Figure 14). An especially key value in the table for each 

application was its Identifier. As the analysis process progressed, these identifiers were found in 

other extracted tables. Another column in this table containing pertinent data was the Purchase 

Date. The date and time stamps in these cells correspond to the actual installation date and time 

of the wallets onto the mobile device. These data entries for the wallets remained present in the 

table after trading in Stage 3 and were still extracted after deletion of the wallet applications in 

Stage 4. 

 
Figure 14. Installed Applications data table entries from the UFED Touch Extraction of the 

Android device. 
 

 Within the Data Files tree item, the Databases category was the only one found to contain 

data relating to the wallet applications after their installation. The launcher.db file, when opened 

in DB Browser for SQLite, displayed two tables labeled AppOrder and Favorites. These two 

tables contained a column listing the wallet identifiers, as found in the Installed Applications 

table. The Favorites table also had a column describing the application’s Intent (see Figure 15). 

An intent is defined by the Android Developers webpage as an abstract description of an 

operation to be performed. More basically, it is a component involved in the launching of 
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activities on the mobile device (“Intent”). For each of the four wallets, there was a Favorites 

table entry listing the identifier and intent for the applications when clicked to launch. These data 

entries for the wallets remained present in the table after trading, but were not extracted after 

deletion of the wallet applications.  

 
Figure 15. Favorites table of Launcher Database file in Physical Analyzer from the UFED 

Touch Extraction of the Android device. 
 

 A second database file named localappstate.db was found in the Android extractions 

which contained a table labeled Appstate that held data relating to the wallet applications. When 

opening in DB Browser for SQLite, this table listed the wallet application identifiers, as well as 

the first download timestamps of the wallets, the most recent data delivery time stamp, and the 

user account under which the wallet applications were downloaded. Figure 16 displays these 

entries, which were selected by a SQL query for easier viewing. The timestamps, once converted 

from Unix Epoch (Unix timestamp) to the correct time zone, were congruent with the application 

install date and time, and the date and time when the wallet application was active on the mobile 

device. These table entries were extracted after both trading and deletion of the applications. 

 
Figure 16. Appstate table in DB Browser of LocalAppSate Database file from the UFED Touch 

Extraction of the Android device. 
 

 The Timeline tree item was quite informative for the Android device. After installation of 

the wallets, two entry types of interest were extracted (see Figure 17).  The first were the 
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Installed Application entries—there was one for each of the four wallets, with date and time 

stamps that matched the actual purchase date. The second was Searched Items entries. These 

entries denoted terms typed into the search bar of the Google Play Store, which was, in fact, how 

these wallets were located in the Play Store for download onto the device. These table entries 

were extracted after trading and after deletion of the wallet applications.  

 
Figure 17. Timeline data table entries for the four cryptocurrency wallets from the UFED Touch 

Extraction of the Android device. 
 

 The final tree item analyzed for the physical Android device was the File System. The 

only file found to contain relevant data not previously discovered was the finsky.xml file in the 

com.android.vending sub-item (see Figure 18, boxed in yellow). When selected in Physical 

Analyzer, the text view of the file displayed three of the four wallet application names amid a list 

of other device applications, which are marked in the red boxes in Figure 18. Based on the code 

present (orange underlines), this finsky.xml file was determined to be a record of application 

update notifications. It was also deduced that the wallet applications were present in this list 

because the default setting for the mobile device was to automatically update installed 

applications when connected to a WiFi network and that this update process occurred during 

testing. After the installation of the wallet applications, this file and its contents were visible in 

the File System tree item in all subsequent stage extractions.  
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Figure 18. Finsky.xml file within the File System tree item in Physical Analyzer from the UFED 

Touch Extraction of the Android device. 
 

 

IV. C. Virtual Android Device Results 

 Given that five separate extractions were necessary after each stage to collect the data 

specific to the four wallets, as well as the collective application data in memory, the results of 

each are likewise discussed separately.  

 

IV. C. 1. Bitcoin Wallet Results  

 From the ADB pull of the Bitcoin Wallet application, five folders were extracted: 

app_blockstore, app_log, databases, files, and shared_prefs. The app_blockstore folder contained 

one file, blockchain.file, whose data was not human readable when opened in Notepad++. The 

app_log folder contained a file labeled wallet.log which was found to be a historical record of the 

wallet application’s activity for the most recent emulator session. Of particular interest in this log 

file were the blocks of entries for a transaction, which involved the TX message of the Bitcoin 
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Protocol (see Figure 19). After comparing the activity in a log containing both a sent and 

received transaction, it was found that all pertinent entries relating to a transaction included the 

transaction hash value. Searching the transaction hash in Notepad++ brought up a Results box 

listing all entries containing the hash value (see Figure 20), which, after referring back to the full 

log file, were surrounded by the other entries describing the transaction. Searching “tx” similarly 

helped with narrowing the area of focus for relevant information within the extensive log file. In 

addition to Bitcoin network protocol messages and transaction hashes, the wallet.log file also 

provided a variety of IP addresses of network peers. Based on the structure of the Bitcoin 

network, it was concluded that these IP addresses are most likely linked to random Bitcoin nodes 

which were involved in passing along the information and/or in verifying this singular 

transaction. 

 
Figure 19. Transaction entries for the first received payment in the wallet.log file of the Bitcoin 

Wallet application. 
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Figure 20. Results for a search of the first received transaction hash in Notepad++ within the 

Bitcoin Wallet wallet.log file. 
 
 Switching back to the ADB pulled files, in the databases folder was address_book.file 

and address_book-journal.file, two files which were unreadable in Notepad++ and contained no 

data in their tables when opened in DB Browser for SQLite. Into the files folder, three files were 

extracted: key-backup-protobuf.file, key-backup-protobuf.p3, and wallet-protobuf.file. None of 

these files were readable when opened in Notepad++. Finally, in the shared_prefs folder was a 

single file labeled de.schildbach.wallet_preferences.xml. The data in this file was just a short 

code script for some of the wallet application preferences. After deletion of the Bitcoin Wallet 

application from the emulator, its application data folder ceased to exist and thus could not be 

pulled. 

 

IV. C. 2. Hive Wallet Results  

 From the ADB pull of the Hive Wallet application, six folders were extracted: 

app_blockstore, app_log, cache, databases, files, and shared_prefs. The contents of the first two 

folders were the same as those found for Bitcoin Wallet. In the cache folder, two files were 

extracted: wallet.-267244447.log and wallet-dump.1791589373.txt. The log file, like the 

wallet.log file in the app_log folder, was a historical record of wallet activity. Unlike the 

wallet.log file which includes communication information with external sources, this log file 

appeared to list activity exclusively internal to the application. There were, however, entries with 
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similar TX information for a transaction seen in this file as was found in the wallet.log file 

(Figure 21).  

 
Figure 21. Entries within wallet.-267244447.log in Notepad++ listing TX information for the 

first sent transaction for the Hive Wallet. 
 
 The wallet-dump.1791589373.txt was another log of the wallet activity; however, this file 

was more of a summary of the transactions made within the wallet. This summary included the 

public wallet key, the amount of bitcoins currently in the wallet and the methods of transactions 

in which by that value was reached, followed by more detailed descriptions of these sent and 

received transactions. Figure 22 provides a basic view of this log in Notepad++.  

 
Figure 22. Data within the wallet-dump.1791589373.txt file in Notepad++ constituting Hive 

Wallet transaction summaries. 
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 The files in the databases folder included address_book.file, address_book-journal.file, 

manifests.file, and manifests-journal.file. Address_book.file contained no data in its tables when 

opened in DB Browser for SQLite and address_book-journal.file was unreadable in Notepad++. 

When opened in DB Browser for SQLite, manifests.file had a table labeled manifests, which 

contained a singular entry with data pertaining to the Hive Wallet application (see Figure 23). 

The manifests-journal file was unreadable when opened in Notepad++.  

 
Figure 23. Manifests table in the manifests database from the ADB pull of the Hive Wallet 

application. 
 
 Extracted into the files folder were three files: key-backup-protobuf.file, key-backup-

protobug.93, and wallet-protobuf.file. The data of all three files was unreadable when opened in 

Notepad++. Finally, in the shared_prefs folder was a single file labeled 

com.hivewallet.androidclient.wallet_preferences.xml. The data in this file was just a short code 

script for some of the wallet application preferences. After deletion of the Hive Wallet 

application from the emulator, its application data folder ceased to exist and thus could not be 

pulled. 

 

  



Page 41 of 49 
 

IV. C. 3. Litecoin Wallet Results  

 From the ADB pull of the Litecoin Wallet application, five folders were extracted: 

app_blockstore, app_log, databases, files, and shared_prefs. In the app_blockstore folder, 

blockchainlitecoin.file was the only file extracted, which contained no readable data when 

opened in Notepad++. The app_log folder contained the wallet.log file chronologically 

describing the wallet application’s activity. In the databases folder were the files 

address_book.file and address_book-journal.file, which, respectively, contained no data in its 

tables when opened in DB Browser SQLite and was unreadable in Notepad++. The files folder 

contained three extracted files: key-backup-base58litecoin.93, litecoin.peerdb, and wallet-

protobuflitecoin.file. The .93 file, when opened in Notepad++  (see Figure 24), contained data 

that essentially gave a warning to the user to protect the private key of the wallet, along with the 

actual private key for the wallet and the date and time stamp for when the wallet was created and 

opened for the first time. The other two files were not readable when opened in Notepad++ and 

the Litecoin.peerdb file could not be opened in DB Browser for SQLite. Lastly, in the 

shared_prefs folder was the de.schildbach.wallet_ltc_preferences.xml file, which just contained a 

short code script for some of the wallet application preferences. After deletion of the Litecoin 

Wallet application from the emulator, its application data folder ceased to exist and thus could 

not be pulled. 

 
Figure 24. Data within the wallet-dump.1791589373.txt file in Notepad++: a security warning 

and the private key for the Litecoin Wallet. 
 

  



Page 42 of 49 
 

IV. C. 4. Darkcoin Wallet Results 

 From the ADB pull of the Darkcoin Wallet application, five folders were extracted: 

app_blockstore, app_log, databases, files, and shared_prefs. The app_blockstore folder contained 

the blockchain file, which again was not readable in Notepad++. The app_log folder held the 

informative wallet.log file. The databases folder contained the address_book and address_book-

journal files, which, respectively, contained no data in its tables when opened in DB Browser for 

SQLite and was unreadable in Notepad++. Into the files folder, key-backup-protobuf.file, key-

backup-protobuf.93, and wallet-protobuf.file were extracted. None of these three files contained 

readable data. Finally, in the shared_prefs folder was the 

hashengineering.darkcoin.wallet_preferences.xml file, which only contained a short code script 

for wallet application preferences. After deletion of the Darkcoin Wallet application from the 

emulator, its application data folder ceased to exist and thus could not be pulled.  

 

IV. C. 5. All Application Extraction Results 

 In addition to the data extracted from the ADB pulls of the specific wallet applications, 

the data extracted from pulling all of the application folders was also analyzed for potential 

artifacts. Out of all of the files pulled, only two new database files were found to contain data 

pertinent to the wallet applications. The launcher.db file in the com.android.launcher folder 

previously discovered in Physical Analyzer was also extracted in the ADB pull and contained the 

same entries for the wallets in its favorites table. As had also been observed in the analysis of the 

physical Android device, these entries did not exist in the launcher database once the wallet 

applications were deleted. The first new file was in the com.android.providers.downloads folder. 

In the databases sub-folder, the downloads.db file was opened in DB Browser for SQLite, where 
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the downloads table was found to contain four entries, one for each of the downloaded wallet 

applications. There were numerous columns in this table, of note were the uri, _data, lastmod, 

and title columns. URI stands for uniform resource identifier and is a string of characters that 

identifies a resource (Masinter, Berners-Lee, and Fielding, 1998). The URI column alone 

contains an abundance of information about the wallet applications, such as the source URL of 

these downloaded application, the file type of the download, the Google ID of application, and 

the Unix Epoch (Unix timestamp) for when the application was first opened on the device. The 

_data column indicates where the downloaded file was stored, the lastmod column indicates the 

Unix Epoch (Unix timestamp) that the wallet application file was downloaded, and the title 

provides the title of the file downloaded. Figure 25 shows a SQL query for the data contained in 

these four columns. These table entries were still present in this extracted database after deletion 

of the wallet applications from the emulator. 

 
Figure 25. SQL query for uri, _data, lastmod, and title columns in the downloads table of the 

downloads database file located in the com.android.providers.downloads folder extracted from 
the ADB pull of All Application Data. 

 
 The second file of relevance from the ADB pull of all application data was the 

external.db file in the extracted com.android.providers.media folder. The files table contained 

four columns with pertinent data: _data, date_added, date_modified, and title. The data in these 

columns for the four wallet entries described the path where the downloaded APK file was 

saved, the Google ID of the wallet application, and the Unix Epoch (Unix timestamp) of the 
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wallet application installation and last modified time. Figure 26 shows a SQL query for the data 

contained in these four columns pertaining to the four wallet applications. These table entries 

were still present in this extracted database after the wallet applications were deleted.  

 
Figure 26. SQL query for _data, date_added, date_modified, and title columns in the files table 
of the files database file located in the com.android.providers.media folder extracted in the ADB 

pull of All Application Data. 
 

V. Discussion 

 After analysis of the physical iOS device, it was concluded that UFED Physical Analyzer 

is a tool capable of determining active wallet application presence on a mobile iOS device. After 

installation of the bitWallet and CoinPocket wallet applications, many indicators of the wallets’ 

presence could be gleaned from the UFED memory extractions. After trading, all of these 

indicators could still be seen; however, once the wallet applications were deleted from the 

device, all references to the wallets and their identifiers ceased to exist. There was also no 

transaction information of any sort to be found in the UFED extractions. As for iFunBox, this 

tool did allow more direct access to the applications themselves and the data held in their 

subfolders. Unfortunately, the data in these folders held nothing of relevance and were no longer 

present after deletion of the wallet applications. Like Physical Analyzer, iFunBox was deemed as 

useful only for determining active wallet application presence on an iOS device. In summary, the 

best approach for harvesting cryptocurrency wallet information on an iOS device would be to 

simply open up the wallet application itself and browse the transaction data provided there. 
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 After analysis of the physical Android device, it was concluded that UFED is an effective 

tool for determining both present and past wallet application presence on an Android device. 

Physical Analyzer was able to parse out a substantial amount of data that indicate wallet 

presence, such as installation date and time stamps, last modified date and time stamps, and even 

the email account responsible for the download of the wallet applications onto the device. Unlike 

the data harvested by the iOS extraction tools, the wallet indicators captured for the Android 

device were still extracted after deletion of the wallet applications from the device. As for 

transaction data, again none could be found in the physical Android extractions.  

 After analysis of the virtual Android device, it was concluded that the ADB pull 

command-line tool is capable of extracting a wealth of valuable transaction information for 

active cryptocurrency wallet applications. The most relevant file pulled from each of the 

emulator wallet applications was the wallet.log file in the app_log folder. As previously 

described, this file was a historical record of the wallet’s activity, the most important of which 

were transaction-related communications. By searching the term “tx” in a text-editing program 

like Notepad++, transaction data such as time stamps and transaction hashes could be found 

within the log file. Whether the transaction was an outgoing or incoming payment could also be 

established, as well as the final currency total in the wallet after completion of the transaction. 

While the IP addresses found in the wallet log were confirmed to be involved in the transaction, 

it could not be definitively said whether they were the source/destination of a transaction or if 

they were simply intermediate broadcast nodes for the transaction. The transaction hash is still 

valuable, though, because, once known, it can be searched on the blockchain.info website, where 

a detailed description of the transaction is publicly available. ADB pull was also capable of 

extracting information indicating wallet presence on the mobile device, but only if the wallet had 
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been installed via a downloaded APK file. These indicators were extracted after installation and 

persisted after deletion of the wallet applications. 

 

VI. Conclusions and Forensic Relevance 

 Given that cryptocurrencies have been used in illegal transactions, the ability to 

forensically evaluate these digital currency systems and their cryptographic wallets is imperative. 

This research was successful in determining UFED Physical Analyzer and iFunBox as suitable 

tools for extracting wallet application indicators for the bitWallet and CoinPocket Bitcoin wallets 

off of an iOS mobile device. These tools, however, were unsuccessful in their ability to extract 

wallet data after the applications had been deleted from the mobile device and to harvest any sort 

of transaction information. 

 For Android mobile devices, it was discovered that the use of UFED Physical Analyzer 

against .ufd memory dump files is a reliable tool for determining past and present cryptocurrency 

wallet application presence on a device, while ADB pull performs well as an extraction tool for 

transaction information from a device with an active wallet application. Of particular interest to 

forensic examiners and law enforcement may be the IP addresses and transaction hashes found in 

the wallet.log files. If the case is serious enough, the IP addresses could potentially be used as a 

lead in the search for the source or destination address of an illicit cryptocurrency transaction. 

Likewise with the transaction hashes—if the hash is discovered or disclosed, it can be searched 

against the public ledger online. There, transaction data such as the received date and time stamp, 

the IP address of the first node to broadcast the transaction, and the input and output values are 

provided. Additionally, one can search a specific address against the public ledger to see all past 

transactions linked to the address. If an address has been connected to one known illegal 
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transaction, there is an opportunity to survey past and even monitor future transactions made by 

the address.   

 Looking beyond the discoveries of this research, further research into the forensic 

analysis of cryptocurrency wallets should indubitably be performed. In particular, investigation 

into an effective method of extraction of cryptocurrency wallet and transaction information from 

iOS devices would be of high value for digital forensic examiners. Tests of the ADB tools on a 

physical Samsung Galaxy S4 Android device instead of an emulator should also be conducted, as 

well as on devices running newer and older Android OS versions than 4.4.2 and devices beyond 

a Samsung Galaxy S4. Finally, a method of extracting transaction information from an Android 

device after wallet applications have been deleted would no doubt be of high forensic value.  

 As previously discussed, while many studies have been made into the public ledger of 

cryptocurrencies, investigation into the cryptocurrency wallets themselves, while of equal 

importance, is still deficient. Although the results from this research are a step in that direction, 

more tests and analyses must be performed in order to allow forensic examiners and law 

enforcement officers to effectively respond to the criminal web expanding within the rapidly 

developing realm of cryptographic currencies.  

  



Page 48 of 49 
 

References 
 

1. Virtual Currency: Bitcoin and Beyond, Part 1. [Internet]. Virtual Currency: Bitcoin and 
Beyond, Part 1. 2014 [cited 2014 July 10]. CIO Journal. Retrieved from 
http://deloitte.wsj.com/cio/2014/06/24/understanding-virtual-currency-bitcoin-and-
beyond-part-1/?mod=wsjcio_hp_deloitte. 

2. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M., 
and Stefan Savage. 2013. A fistful of bitcoins: characterizing payments among men with 
no names. Proceedings of the 2013 conference on Internet measurement conference (pp. 
127-140). ACM. 

3. Nakamoto, Satoshi. 2008. Bitcoin: A peer-to-peer electronic cash system. Retrieved from 
https://bitcoin.org/bitcoin.pdf. 

4. de la Porte, Lodewijk André. 2012. The Bitcoin transaction system. Utrecht. Netherlands. 

5. Luther, William J. 2013. Cryptocurrencies, Network Effects, and Switching Costs. 
Mercatus Working Paper, Mercatus Center at George Mason University, Arlington, VA, 
forthcoming. Retrieved from https://papers.ssrn.com/sol3/papers.cfm.  

6. How to Set Up a Wallet. [Internet]. BTC Gear. 2013 [cited 2014 July 9]. Retrieved from 
http://bitcoinsimplified.org/get-started/how-to-set-up-a-wallet/. 

7. Mining. [Internet]. BTC Gear. 2013 [cited 2014 July 9]. Retrieved from 
http://bitcoinsimplified.org/learn-more/mining/. 

8. Birukov, A., Khovratovich, D., and Ivan Pustogarov. 2014. Deanonymisation of clients in 
Bitcoin P2P network. arXiv preprint arXiv:1405.7418. Retrieved from 
http://arxiv.org/pdf/1405.7418.pdf. 

9. Bitcoin Developer Guide. [Internet]. Bitcoin Project. 2009 [cited 2014 October19]. 
Retrieved from https://bitcoin.org/en/developer-guide#full-node.  

10. Sprankel, Simon. 2013. Technical Basis of Digital Currencies. Retrieved from 
http://www.coderblog.de/wp-content/uploads/technical-basis-of-digital-currencies.pdf. 

11. Main Page. [Internet]. Litecoin Wiki. 2011 [cited 2014 July 02]. Retrieved from 
https://litecoin.info/. 

12. Litecoin. [Internet]. Wikipedia. 2014 [cited 2014 July 02]. Retrieved from 
http://en.wikipedia.org/wiki/Litecoin. 



Page 49 of 49 
 

13. Duffield, Evan and Kyle Hagan. 2014. Darkcoin: Peer-to-Peer Crypto-Currency with 
Anonymous Blockchain Transactions and an Improved Proof-of-Work System. Retrieved 
from http://www.darkcoin.io/downloads/DarkcoinWhitepaper.pdf. 

14. What Is Darkcoin? [Internet]. Darkcoin. 2014 [cited 2014 June 30]. Retrieved from 
http://www.darkcoin.io/intro.html. 

15. DarkSend. [Internet]. 2014. Darkcoin Wiki. 2014 [cited 2014 July 10]. Retrieved from 
http://wiki.darkc0oin.eu/wiki/DarkSend. 

16. Masinter, L., Berners-Lee, T., and R. T. Fielding. 1998. Uniform resource identifier 
(URI): Generic syntax. RFC 2396. 

17. Intent | Android Developers. [Internet]. Android. [cited 2014 October 15]. Retrieved from 
http://developer.android.com/reference/android/content/Intent.html.  


