Methylenedioxypyrovalerone: History, Pharmacology, and Analytical Methods

Bailee Short

Overview

MDPV – A synthetic drug of abuse

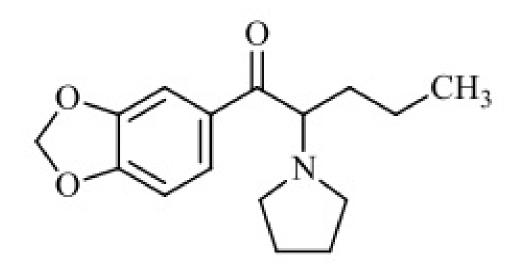
History – Short, but definitely not sweet

Emergency Scheduling

Eventual permanent ban

Analogs causing problems

Pharmacology – A laundry list of physical and psychological effects


Are they truly caused by MDPV?

- Analytical Methods
 - ◆GCMS

 ◆MS/MS

 ◆HPLC

MDPV Structure

"Bath Salts" - MDPV is Common Component

A Brief History

- MDPV emerged in approximately 2010
- Structurally similar to cathinone, an alkaloid derived from the khat plant native to East Africa and the Arabian Peninsula
- MDPV has no approved medical use in the United States
- On October 21, 2011 MDPV and all its salts, isomers, and salts of isomers were placed under temporary control as Schedule 1 drugs.
- On July 9, 2012, this control became permanent due to the passage of the Synthetic Drug Abuse Prevention Act of 2012.

Circumventing the Laws

- Head Shops, Gas Stations, and Convenience stores still sell these "bath salts" that often contain MDPV
- They are referred to as plant foods, insecticides, research chemicals, and stain removers
- Often labeled as "not for human consumption" in an effort to get around the law.

The Analog Problem

- MDPV is only one of many "bath salt" type drugs
- As soon as one drug (like MDPV) is scheduled, the chemists who manufacture these drugs tweak the structure
- Now a new drug with essentially the same effect as the old, but a slightly different structure, is available that is not scheduled
- Analog laws are not always effective in accounting for these

Pharmacology - How it Operates in the Body

- MDPV is structurally similar to compounds with known pharmacology such as amphetamine and MDMA
- Reuptake Inhibition increases the levels of extracellular monoamine neurotransmitters like Dopamine and Norepinephrine
- Studies have been performed with rats to determine pharmacological details

Pharmacology Continued

- MDPV belongs to a group of αpyrrolidinophenone compounds researched in the 1960's and shown to have central stimulant properties.
- Studied in 1971 as a possible treatment for chronic fatigue syndrome
- Never reached market due to their high potential for abuse

Physical Effects

- Tachycardia
- Hypertension
- Vasoconstriction
- Acral Cyanosis
- Arrhythmia
- Palpitations
- Hyperthermia
- Sweating
- Pupil dilations
- Epistaxis
- Muscle Tremor and Spasms

- Hyper-Reflexia
- Rhabdomyolysis
- Seizures
- Respiratory Distress
- Myocardial Infarction
- Cardiovascular Collapse
- Stroke
- Cerebral Edema
- Coma
- Death

Behavioral and Mental Status Effects

- Panic Attacks
- Anxiety
- Agitation
- Paranoia
- Hallucinations
- Psychosis
- Aggressive Behavior
- Violent Behavior

- Excited Delirium
- Self-Destructive
 Behavior
- Self-Mutilation
- Suicidal Ideation
- Memory Loss
- Insomnia
- Anorexia
- Depression

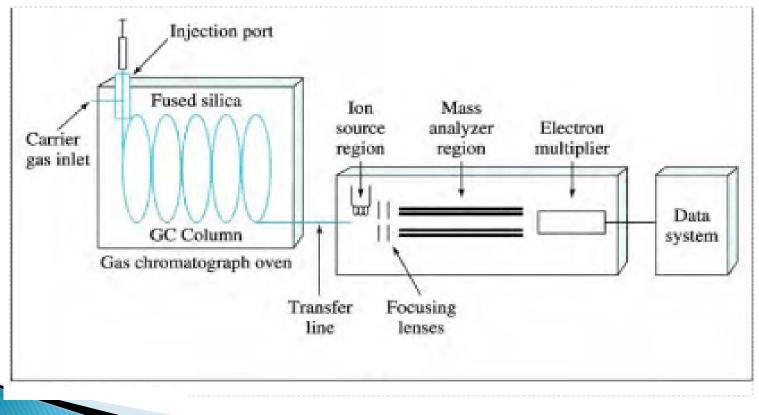
Introduction to the Body

- Administered via snorting, smoking, and intravenous or intramuscular injection
- The average high lasts approximately 6-8 hours with a peak at 90 minutes.
- The average dose is 5-20 mg. (MDMA is 100-150 mg)
- The "come-down" from the drug is described as so unpleasant that users either cease abuse completely or combine the drug with benzodiazepines or alcohol

The Problem with MDPV Symptoms

When MDPV is proposed as the means of an overdose, the abuser had often been taking other drugs or drinking alcohol

*are the symptoms from the MDPV or the additional drugs/alcohol?

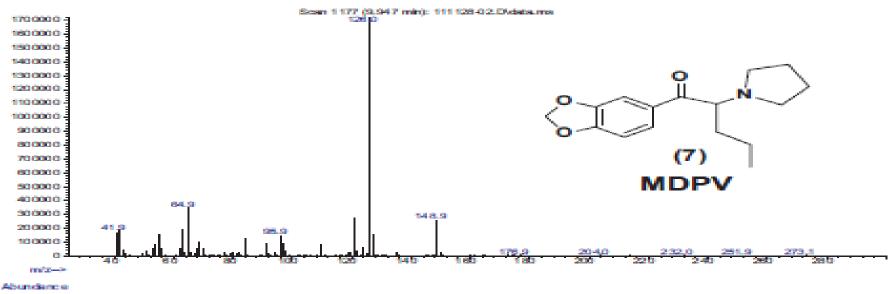

- Further research needed to establish symptoms from only MDPV
- Ethical implications research cannot really go beyond the anecdotal

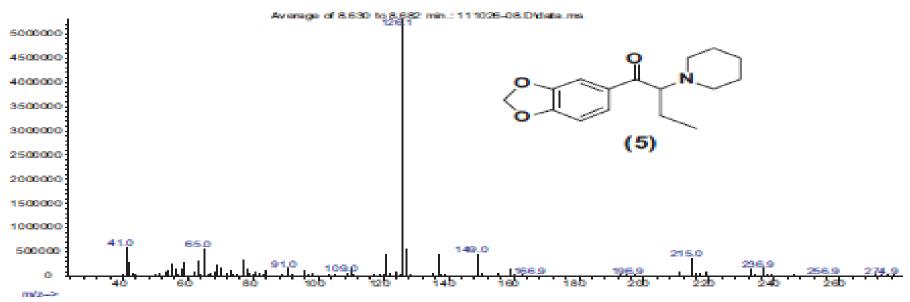
Treatment for MDPV Overdose

- Treatment is currently not evidence-based
- Poison control centers often recommend benzodiazepines to treat the sympathetic overstimulation.
- However, since many abusers often mix MDPV with benzodiazepines, this may be ineffective depending on what was taken.
- Benzodiazepines are also recommended due to concern of seizures as a symptom of an OD

Analytical Methods – GCMS

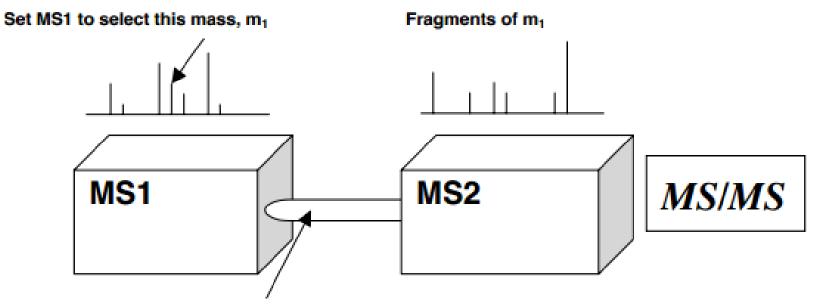
- Gas Chromatography Mass Spectrometry
- Usually available in most laboratories




The Problem with GCMS

- GCMS has trouble differentiating between compounds with comparable structures (They "break apart" the same way)
- MDPV and other bath salts have many analogs with incredibly similar structures
- As bath salt street samples are often combinations of different drugs, GCMS may not be able to establish which drug is present
- This is a problem as some drugs are illegal while others have yet to be scheduled

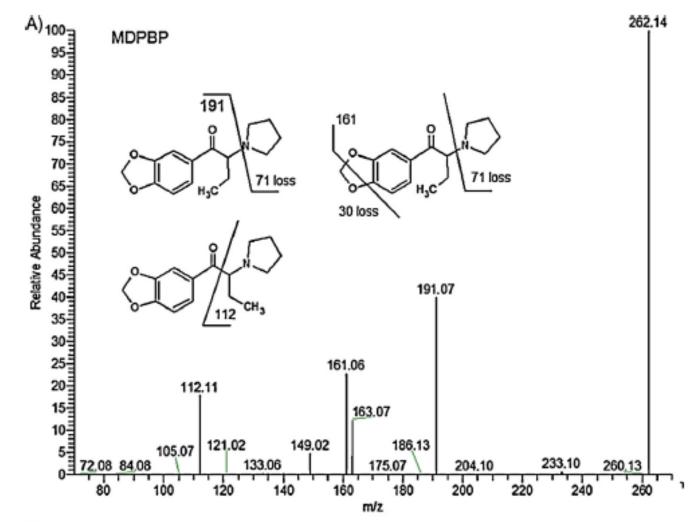
GCMS Spectrum - MDPV and Analog


One Potential Solution – Derivatization

- Derivatization allows for differentiation between analogous drug samples
- Derivatization agents usually target one specific functional group on a compound
- This functional group is then converted to a derivate with differing solubility, boiling point, etc from the original
- Since the chemical properties are now different, GCMS will be able to more easily identify analogous compounds

Analytical Methods - MS/MS

- Tandem Mass Spectrometry
- Mass spectrometers are usually combined with separation devices like GC or LC.
- In MS/MS, the separation device is another mass spectrometer
- MS/MS is used for the structural studies of complex molecules


MS/MS Diagram

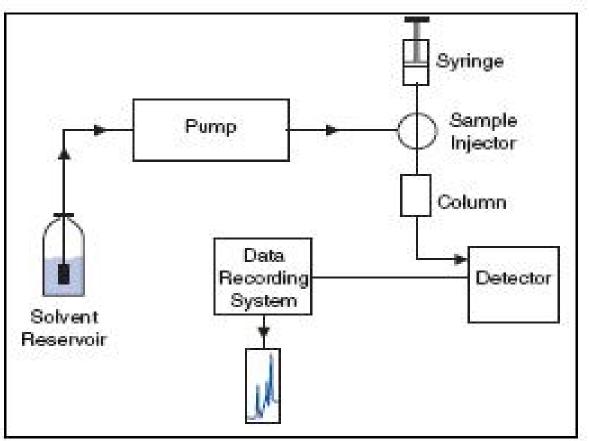
CID: Gas-filled collision chamber.

m1 breaks apart to produce fragments

MS/MS Spectrum

What can be established by MS/MS

- Accurate masses of compounds (depending on resolution, high resolution is needed)
- How the compounds fragment (Product Ions)
- If the masses are accurate enough to establish tentative chemical structures, comparison to a library of known structures can be done to ascertain compound identity


Compound	Measured mass [M+H](amu)	Theoretical mass [M+H] (amu)	Error (ppm)	Precursor ion [M+H]	Product ion 1	Product ion 2	Product ion 3	Product ion 4
Butylone	N/A	N/A	N/A	222	204	191	174	72
Mephedrone	178,1223	178,1226	1.7	178	160	147	N/A	N/A
Ethcathinone	178,1222	178,1226	2,2	178	160	132	105	N/A
4-FMC	182,0971	182,0976	2.7	182	164	N/A	N/A	N/A
4-MEC	192,1379	192,1383	2.1	192	174	146	119	98
Unknown saccharide	217,0681	217,0680	0.5	217	195	182	165	138
α-PVP	232,1690	232,1696	2.6	232	161	126	105	91
D2PM	238,1584	N/A	N/A	238	221	143	129	117
MDPBP	262,1428	262,1438	3.8	262	191	161	112	72
β-Naphyrone	282,1844	282,1852	2.8	282	211	183	141	126
4-MPPP	218,1533	218,1539	2,8	218	147	119	98	72

The Problem with MS/MS

- MS/MS is only accurate for single-compound samples (pure MDPV, etc)
- Again, bath salt street samples are often mixtures of different drugs
- Running a mixed sample with MS/MS will result in inconclusive data
- Is there a solution?

The Solution – HPLC

High Performance Liquid Chromatography

Building a GCMS Library

- By combining MS/MS with HPLC, individual components of mixtures can be identified
- If available, standards of these drugs can be purchase and analyzed on GCMS
- An in-house library can be developed that will allow for differentiation in GCMS for future bath salt samples
- Of course, this will be tedious to maintain as new drug analogs are consistently being released

Conclusions

- MDPV has decreased in popularity but remains dangerous nonetheless
- Clandestine labs release unscheduled analogs faster than the law can schedule them
- Treatment is limited and usually based on anecdotal evidence unsupported by research
- GCMS is widely available in labs, but may have difficulty differentiating between drug analogs of MDPV
- MS/MS combined with HPLC has more success but is not as common in labs

Acknowledgements

- Dr. Lauren Waugh
- Dr. Pamela Staton
- Michelle Ball

References

- Drug Enforcement Administration. Drug & Chemical Evaluation Section. 3,4-Methylenedioxypyrovalerone (MDPV). 2013. <http://www.deadiversion.usdoj.gov/drug_chem_info/mdpv.pdf>.
- Leffler, Amanda, Philip Smith, Adriana Armas, and Frank Dorman. The analytical investigation of synthetic street drugs containing cathinone analogs. Forensic Sci Int 2013; 234: 50-56.
- Ross, Edward, Gary Reisfield, Mary Watson, Chris Chronister, and Bruce Goldberger. Psychoactive "Bath Salts" Intoxication with Methylenedioxypyrovalerone. Am J Med 2012; 125(9): 854–858.
- Y.F.H. Abiedalla, et al. Synthesis and GC-MS analysis of a series of homologs and regioisomers of 3,4- methylenedioxypyrovalerone (MDPV). Forensic Sci Int 2012; 223(1): 189–197
- Baumann, Michael, John S. Partilla, and Kurt R. Lehner.
 Psychoactive "bath salts": Not so soothing. Eur J Pharmacol 2013;
 698: 1–5

Picture References

- Drug Enforcement Administration. Drug & Chemical Evaluation Section. 3,4– Methylenedioxypyrovalerone (MDPV). 2013.
 http://www.deadiversion.usdoj.gov/drug_chem_info/mdpv.pdf.
- Cuomo, Andrew. Synthetic Drugs and Bath Salts. LAPPL joins the spray of 'bath salts' warnings. 2012.

<http://www.scpr.org/blogs/news/2012/1 0/19/10610/lappl-joins-spray-bath-saltswarnings/>.