MARSHALL UNIVERSITY

Internal Validation of the **Promega® PowerPlex® Fusion System** with the **Applied Biosystems® 3130xl** Genetic Analyzer

Roy Al Ahmar, B.S. Marshall University Forensic Science Center DNA Laboratory

Overview

What is DNA?
Processing
Extraction
Quantification
Amplification
Capillary Electrophoresis
Analysis

What is DNA?

Deoxyribo Nucleic Acid

Nucleoside triphosphate

MARSHALL UNIVERSITY

http://upload.wikimedia.org/wikipedia/commons/e/e2/Nucleotides_1.svg

999996 00000 0.000

Nucleotide

http://upload.wikimedia.org/wikipedia/commons/e/e2/Nucleotides 1.svg

2D Structure

MARSHALL UNIVERSITY

FORENSIC SCIENCE CENTER

http://diverge.hunter.cuny.edu/~weigang/Images/02-16_dnastructure_1.jpg

3D Structure

Chromosomes -44 XY/XX

FORENSIC SCIENCE CENTER

http://www.mun.ca/biology/scarr/FISH_chromesemes_300dpi.jpg

Alleles and Traits

 Chromosomes carry traits in forms of alleles

by Cheryl Bardoe 🌲 Mastuted by Jos. A. Smith

....

So.....What is DNA????

• Blueprint

.....

000000

User's Manual

AND STATISTICS

OCCUPATION OF

http://www.beverlyheights.org/files/blueprint.jpg http://www.digitaldingus.com/reviews/impactacoustics/40697/40697_uspace.center

DNA in Forensics

• STR- Short Tandem Repeats

Alleles identified by number of STR repeats

Extraction ----

http://www.geneticliteracyproject.org/wp/wp-content/uploads/2012/07/jewish-DNA.jpg http://contentforbiz.com/wp-content/uploads/2011//11/rope-pulling.jpg

DAB Standards Want You to Quant

MARSHALL UNIVERSITY

FORENSIC SCIENCE CENTER

http://1.bp.blogspot.com/-eDNT1iDtXSA/TZZCy5BZywl/AAAAAAAAAAAAAAAAAA/6GPb1x4j1tg/s640/Poster1-3.I+WANT+YOU.jpg

Quantiplex-Investigator-HYres-Handbook.pdf

5'

3'

3' 5'

3' 5'

3'

http://bioserv.fiu.edu/~biolab/labs/Genetics/DNA%20processes_files/image006.jpg

FORENSIC SCIENCE CENTER

Capillary Electrophoresis

000000

00000

...

FORENSIC SCIENCE CENTER

RSITY

FORENSIC SCIENCE CENTER

FORENSIC SCIENCE CENTER

Analysis

http://www.promega.com/resources/articles/profiles-in-dna/2012/bridging-databases-for-today-and-tomorrow-the-powerplex-fusion-system/

FORENSIC SCIENCE CENTER

MARSHALL UNIVERSITY

Overview Validation

Overview of the Chemistry

Validation Work

Troubleshooting

Studies Future Studies

Conclusion

Promega® PowerPlex® Fusion System

- 24 loci 5 Dye Chemistry
- Core 13 CODIS loci

(CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, and D21S11)

• 12 European Standard Set loci (TH01, vWA, GA, D21S11, D3S1358, D8S1179, D18S51, D10S1248, D22S1045, D2S441, D1S1656, and D12S391)

• Penta E, Penta D, D2S1338, D19S433 and Amelogenin and a Y-STR loci (DYS391)

MARSHALL UNIVERSITY

Promega® PowerPlex® Fusion System (cont'd)

- Amplifies on 9700 at Max Ramp Speed
- Works on ABI® 310, 3130, 3130*xl*, 3500, 3500*xl*
- No upgrades necessary
- Only simple software upgrades for GeneMapper® ID v3.2.1 present free online

Preliminary Testing – 2800M Raw Data

Validation Work

- 1. Cycle Number, DNA Target, Injection Time Study
- 2. Threshold Study
- 3. Precision Study
- 4. Peak Height Ratio Study
- 5. Concordance Study
- 6. Contamination Study
- 7. Stutter Study
- 7. Mixture Study
- 9. Inhibition Study
- 10. Non-Probative Samples Study

Cycle Number, DNA Target, Injection Time

- 30 cycles vs. 31 cycles
- Serial Dilution in triplicates

10 ng	
5 ng	
2.5 ng	
1 ng	
0.5 ng	
0.25 ng	
0.125 ng	
0.0625 ng	
0.0313 ng	
0.0156 ng	

Cycle Number, DNA Target, Injection Time (cont'd)

- Injection at 3, 5, 10, 15 seconds at 3kV
- Total Injection Time changed from 1500 seconds to 1700 seconds

Threshold Study

- Reagent Blanks ran in 5 replicates and injected 5 times
- Results analyzed at 1 rfu

Analytical Threshold

Method 1: IUPAC

 $AT = Y_{bl} + ks_{bl}$

AT= Analytical Threshold Y_{bl} = Average black RFU signal k=3 S_{bl} = Standard Deviation of the blank signal

Analytical Threshold

Method 2: SWGDAM

 $AT=2(Y_{max}-Y_{min})$

AT= Analytical Threshold Y_{max} = Highest peak within instrumental noise Y_{min} = signal of the lowest trough

MARSHALL UNIVERSITY

Results

Table 1: Analytical Threshold- Method 1

Dye	Average Height	Standard Deviation Height	Minimum Height	Maximum Height	Analytical Threshold
Blue	4.63	1.56	1	18	9.31
Green	6.03	1.87	1	20	11.63
Yellow	8.37	2.46	2	27	15.75
Red	6.34	1.86	2	35	11.93

Table 2: Analytical Threshold- Method 2

.....

Dye	Average	Standard	Minimum	Maximum	Analytical	
	Height	Deviation	Height	Height	Threshold	
		Height				
Blue	4.63	1.56	1	18	34	
Green	6.03	1.87	1	20	38	
Yellow	8.37	2.46	2	27	52	
Red	6.34	1.86	2	35	68	

Troubleshooting

- Artifact present in Reagent Blanks but not in samples
- Consistent with Qiagen® EZ1 DNA Investigator kit contaminant profile
- Re-amplified- not replicated
- Eliminated because not reproducible.

LOD and LOQ

LOD= Average noise signal + 3 * Std

LOQ= Average noise signal + 10 * Std

Results

Dye	Average Height	Standard Deviation Height	Minimum Height	Maximum Height	LOD	LOQ
Blue	4.63	1.56	1	18	9.31	20.21
Green	6.03	1.87	1	20	11.63	24.72
Yellow	8.37	2.46	2	27	15.75	32.96
Red	6.34	1.86	2	35	11.93	24.96

Stochastic Threshold

ST = [1/(Average PHR- 3x STD)] x AT

.....

27

a ta ta ta

..... 09999

	Dye	AVG PHR	STD PHR	AT-M1	AT-M2	ST-M1	ST-M2
	Blue	0.8191	0.0883	9.31	34	16.8044	61.3696
0.0	Green	0.8023	0.0666	11.63	38	19.3093	63.0915
	Yellow	0.7874	0.1107	15.75	52	34.603	114.245
	Red	0.7611	0.1234	11.93	68	30.517	173.944

Precision Study

- 16 ladders injected 5 times
- TF punches ran previously
- 3 Standard Deviation must be less than 0.5bp

- Highest 3*STD = 0.284 at allele 15 for D12S391 at 31 cycles and 5 second injection
- Lowest 3*STD = 0.069 at allele 12 for D16S539 at 31 cycles and 5 second injection

Peak Height Ratio

- 5 second injection of the TF punches was used
- Average PHR versus template DNA calculated

.....

.....

MARSHALL UNIVERSITY

Concordance

- 35 convicted offenders samples used
- Compared to the PowerPlex® 16 results

 All samples were in concordance with the previous results except for 1 sample that had drop out

Contamination

 Ladder and Run Negative checkerboard plate was ran and injected with the initial plate at 3, 5, 10, 15 seconds

- No cross contamination was present in the run negatives.
- One injection did show some peaks in the Run Negative, yet those peaks were not present in the other injections so they were not considered since they were not reproducible.

Stutter Study

- 35 Convicted offenders samples amplified at 0.125ng, 0.5 ng , 1.875 ng
- Macro from strbase.com
- Formula:

Stutter = Avg Stutter Ratio + 3 * Stutter Ratio Std

Stutter example at D10S1248 – D13S317

MARSHALL UNIVERSITY

MARSHALL UNIVERSITY

D10S1248

.....

000000

Locus	Min	Max	Avg PHR	STD PHR	Stutter (fx)	Stutter
D10S1248	5.556	17.582	8.930	2.620	16.78936	17%
D12S391	4.178	20.619	10.120	3.455	20.48612	20%
D13S317	1.573	10.345/28.125	6.431	4.045	18.56583	<mark>28%</mark>
D16S539	3.287	<mark>9.050/14.925</mark>	5.986	1.950	11.83729	<mark>15%</mark>
D18S51	3.752	22.472	9.281	3.408	19.50568	22%
D19S433	3.241	13.359	7.479	2.171	13.99052	14%
D1S1656	4.247	19.802	9.093	2.813	17.5322	20%
D21S11	5.395	15.301/22.115	9.191	2.533	16.7903	<mark>22%</mark>
D22S1045	2.581	17.857	10.922	2.992	19.89792	20%
D2S1338	5.040	14.043	8.781	2.061	14.96469	15%
D2S441	2.164	10.313	5.514	1.661	10.49599	10%
D3S1358	5.726	13.043	8.681	2.007	14.70219	15%
D5S818	2.257	15.347/21.359	7.176	2.971	16.08873	<mark>21%</mark>
D7S820	2.379	18.537/24.528	6.600	3.578	17.33509	<mark>24%</mark>
D8S1179	3.414	13.873	7.656	2.020	13.71633	14%
DYS391	5.157	15.302	8.069	2.056	14.23779	15%
FGA	3.994	14.220/17.021	8.017	2.473	15.435	<mark>17%</mark>
TH01	1.266	7.014	2.851	1.519	7.407025	7%
CSF1PO	2.558	11.607	7.018	1.747	12.25882	12%
TPOX	1.808	7.962	3.570	1.353	7.628283	7%
vWA	4.895	21.622/28.986	9.306	4.040	21.42701	<mark>29%</mark>

MARSHALL UNIVERSITY

Mixtures

- Female:Male (19:1, 9:1, 4:1, 1:1, 1:4, 1:9, 1:19)
- Male:Male (19:1, 9:1, 4:1, 1:1, 1:4, 1:9, 1:19)
- Male:Male:Male (1:1:1)

Results- Female:Male 19:1

FORENSIC SCIENCE CENTER

Results- Male: Male 19:1

Results Male:Male:Male 1:1:1

Inhibition

• Humic acid

(100 ng/μl, 150 ng/μl, 200 ng/μl, 250 ng/μl, 300 ng/μl)

• EDTA

(0.4 mM, 0.5 mM, 0.6 mM, 0.7 mM, 0.8 mM)

Blue Denim Dye

(1:10, 1:20, 1:50, 1:100, 1:500)

• 0.5 ng DNA target

- Humic Acid- complete inhibition
- EDTA -no difference the total peak heights ranging from 26819 rfu at 0.7mM to 25,134 rfu at 0.8mM

(minus A artifacts in red channel below 250bp)

- Denim Dye:
- 1:10 complete drop out
- 1:20- drop out in loci greater than 250bp- (Ski Slope seen)
- 1:50, 1:100, 1:500 complete profiles with TPH of 20,564, 26,498, 27,572 rfu respectively.

Results- Humic Acid 200ng/ul.

Results- Dye 1:20

Non-probative Samples

- 25 samples:
- 1. 2 Buccal Swabs
- 2. 5 Touch evidence
- 3. 5 Differentials
- 4. 2 Gum
- 5. 5 Cigarette Butts
- 6. 2 Hair Samples
- 7. 4 Phone Swabs

Troubleshooting

- Total Peak height was showing slope similar to degradation with the lowest ratio of smallest to largest peak being 6% and the highest ratio was 40%.
- Tried 29 cycles
- Tried 0.25, 0.5 and 1 ng loads
- 2800M positive control showed better ratios than TF
- Study of TF versus Buccal Swab with 3 different Extraction Methods (*EZ1* water elution, *EZ1* TE elution, Organic Extraction)

TPH 2800M 0.5ng- 30cycles MAX

Future Studies

Mixture Study Inhibition Study Cross Loci Calling Finish the Total Peak Height Sloping Issue Non-specific STR calling especially from microbial DNA Quantification through the Amplification Kit

Conclusion

- PowerPlex® Fusion provided accurate profiles and a wide range of input target DNA with low amount of artifacts.
- The use of the Promega® PowerPlex® Fusion amplification kit is recommended for the use in future casework samples

Acknowledgement

- Marshall University Forensic Science Center
- Jason Chute
- Josh Stewart
- Christopher William Thatch
- Jennifer Hayden
- Season Seferyn
- Heather Harrah-Lea
- Amanda Hoffman
- Promega®'s Tech Services

References

- Butler, J.M. (2009). *Advanced Topics in Forensic DNA Typing Methodology.* Burlington, MA: Elsevier.
- Butler, J.M. Hill C.R. and Coble, M.D. Variability of New STR Loci and Kits in US Population Groups.
- Pfoser, K. and Owen S. Evaluation of the PowerPlex® Fusion System for Use on the ABI PRISM® 310 Genetic Analyzer.
- Promega Corporation. Validation of STR Systems Reference Manual. Revised 9/06. Part# GE053.
- Promega Corporation. PowerPlex Fusion System Technical Manual. Revised 10/12. Part# TMD039.
- Oostdik, K. et al. Bridging Databases for Today and Tomorrow: The PowerPlex® Fusion System year.

