

Sustainability:

Meeting the needs
of the present
without compromising
the needs of future
Generations.

Why Build High Performance?

Whole Building Design Guide U.S. Naval Facilities Command:

"Many of the factors that influence environmental comfort, such as quality lighting and adequate ventilation rates, also have a direct impact on building energy use. But the relationship between productivity and building energy use should be put in perspective."

For private sector offices:

Salaries average \$200 - \$600 / SF / yr
Building leases average \$20 - \$30 / SF / yr
Energy costs average \$2 - \$4 / SF / yr

Thus, a "productivity" increase of just 1%.....

...can completely offset a building's entire utility bill!

Why Build High Performance?

Lockheed Martin's trailblazing 600,000 SF facility in Sunnyvale, CA, housing 2,500 employees is a case in point.

Lockheed managers reported a 15% drop in employee absenteeism.

A savings that paid for the incremental costs of the company's new high performance facility in the very first year alone.

Who's	Talking About Green?
The Next G	Generation's Perspective will increase GREEN building:
89%	Choose brands aligned with social cause
74%	Listen to brands aligned with social cause
69%	Shop for brands aligned with social cause
66%	Recommend brands aligned with social cause

Myths of "Green" Building

MYTH: Only tree-hugging, granola fueled-

hippies are into "green"

MYTH: Green building is a passing fad.

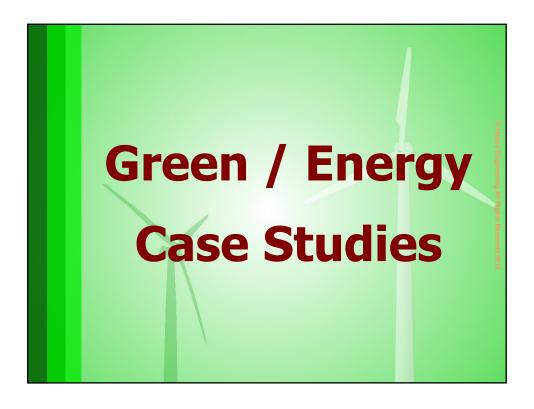
MYTH: Green building is too expensive.

MYTH: Green materials are not available.

MYTH: Green building is easy.

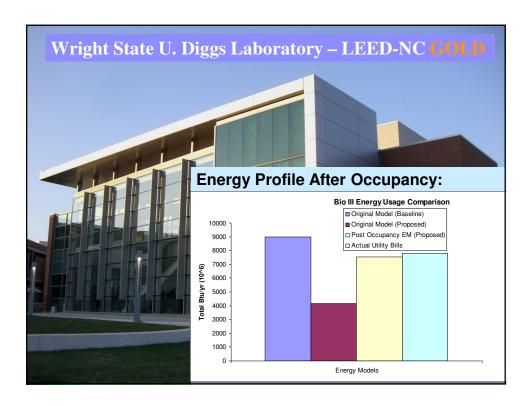
(It is only common sense).

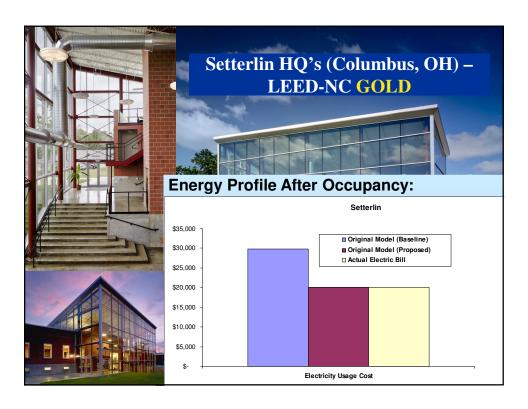
MYTH: Construction waste management is a

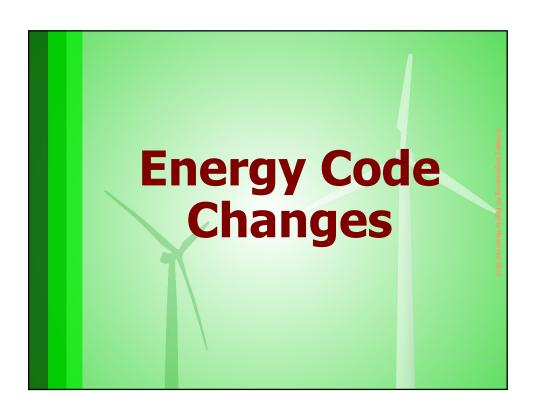

waste of time.

MYTH: Green buildings look strange or

different.







Impact of Energy Code Change

Case Study – Higher Education: 43,000 SF Laboratory Facility

EAc1 (v2.2, v3)	9 points	0 points	
% Energy Savings	41%	10%	
System Type	Constant Volume Rooftop Air Conditioner (System 3)		Variable Volume with Reheat
Lighting (W/sq ft)	1.2	1.2	1.5
Window SGHC	SHGC-0.26	SHGC-0.40	SHGC-0.34
Window U-factor	U-0.46	U-0.55	U-0.31
Roof R-value	R-15	R-20	R-18
Wall R-value	R-11.9	R-15.6	R-3.173
	90.1-2004 Baseline	90.1-2007 Baseline	Design Case

Impact of Energy Code Change

Key Changes:

90.1-2007 Energy Code Updates from 90.1-2004:

- Any project between 25,000 ft² and 75,000 ft² will now be System 5 (VAV w/ Reheat) instead of System 3 (CV Rooftop Unit)
- Envelope 20 to 25% increase in U-Factors
- Glass 20% Reduction in maximum glass allowance

ASHRAE 2010:

- Standard to be nearly 30% more stringent than 90.1-2004
- Lighting Controls will be significant factor
- Extensive Building Envelope and Glass Orientation Revisions
- Sub-Metering to be Required Lighting, Plug Loads, HVAC Systems
- Computer Rooms now Covered by Standard

Energy Issues - Cap & Trade

(Potential) Impact / Effect of Cap & Trade

Title II: Global Warming Pollution Reduction Modifies the Clean Air Act to incorporate:

- cap-and-trade mechanism
- two-thirds of the revenues raised from auctions are paid back to electricity ratepayers in the form of refunds.
- Similar to the House's American Clean Energy and Security Act (ACES) counterpart, APA sets goals of reducing domestic greenhouse gas emissions (GHGs):

17 percent in 2020 & 83 percent in 2050

pollutants under the Clean Air Act.

Also, APA pre-empts specific portions of the Clean Air Act, removing EPA's authority to regulate GHGs from sources covered under the legislation. It ensures GHGs are not considered criteria air pollutants or hazardous air

Energy Issues – Example: Cap & Trade

(Potential) Impact / Effect of Cap & Trade

Annual Campus Energy (Utility) Bill

Mid-Range Target Carbon Cost: \$20 / MTCO2e

Metric Tonne CO2 equivalent (MTCO2e):

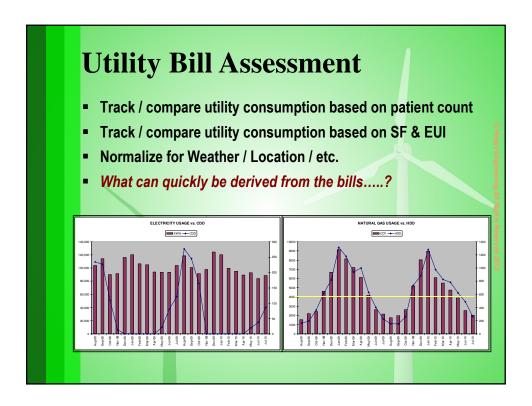
Natural Gas: 0.053 MTCO2e per 1 Million BTUs
Electricity (Coal Based): 0.21 MTCO2e per 1 Million BTUs

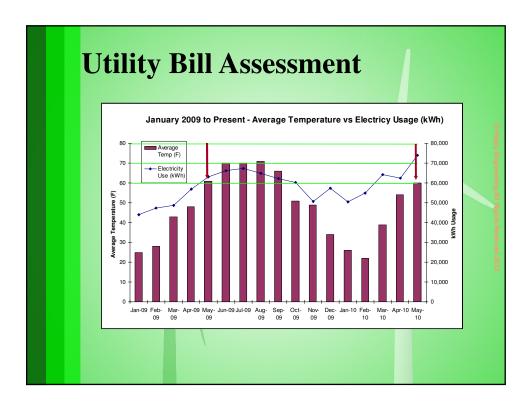
Example:

Mid-West University: \$5.1 MILLION Annual Utility Bill

450,000 MMBTU Annual Energy Consumption

Carbon Tax impact could be: +\$1.0 MILLION annually!




Energy Audits

ASHRAE Audits - Level I - Energy Audit:

- Perform Walk-thru Survey of Building
- Meet with Owner & Operators
- Perform a space function analysis determine whether building use has changed systems effectiveness
- Perform a rough estimate to determine approximate breakdown of energy use by major categories
- Identify potential low-cost or no-cost changes to the facility or to O&M procedures (estimate savings)
- Identify potential capital improvements for further study

Energy Audits

ASHRAE Audits – Level II – Energy Audit:

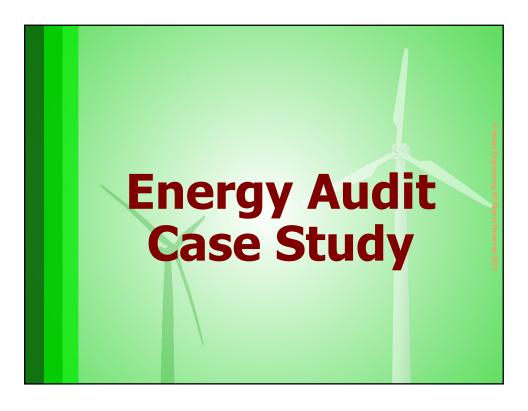
- Review Mech-Elec system design, installed condition maintenance and operations practices
- Review existing O&M problems
- Measure actual operating parameters, as compared to design levels (ie: schedules, temperature, humidity, light levels, etc.)
- Breakdown annual energy use into end-use components (manually or via computer modeling)
- List all possible modifications to equipment and operations that would save energy, then estimate costs and savings and review with Owner/Operator
- Include interaction between energy conservation measures

Energy Audits

ASHRAE Audits – Level III – Energy Audit:

- Expands on Level II analysis
- Provides rigorous engineering analysis with detailed cost and payback
- Capital intensive projects

Energy Conservation Measures


Energy Conservation Measures

Partial List of Typical Low Cost / High Value Projects

- Retro-Commissioning
- Lighting Retrofits
 - Utility Rebate Programs
- Load Shedding
- Occupancy Sensors
- Temperature Settings
- EPACT

- Low Flow Plumbing Fixtures
- Utility Rate Structure Review
- Utility Source Review (Deregulation)
- Scheduling
- Vending Machine Control
- Etc.

Energy Audit – Case Study

Northwest Ohio Hospice – Project Statistics

- 2 locations NW Ohio (Perrysburg and Toledo), nearly identical in size
- Heapy designed Mechanical-Electrical systems for the Perrysburg location
- Toledo facility used 40% more energy than Perrysburg
- Heapy performed Retro-Commx and Energy study for the Toledo facility

Perrysburg, OH

Toledo OH

Energy Audit – Case Study

Northwest Ohio Hospice – Project Statistics

Retro Commissioning Effort Identified:

- Controls (Simultaneous Economizer and Chiller operation)
- Improper Functioning Controls (Fan inlet Vanes, Coil Valves, Freeze Protection Sequence, Boiler controls, etc.)
- Install HW Coil Pump (Freeze Protection)

Energy Study Identified:

- Heat Recovery
- Constant Volume to Variable Volume Supply
- Reduction of Supplied Outside Air (per Code)

Perrysburg, OH

Toledo, O

Energy Audit – Case Study

Northwest Ohio Hospice – Project Statistics

Led to Energy Systems Retro-fit Project
Energy Study Estimated Savings \$30,500
Actual Cost Differential ('08 vs '09): \$50,000

600 =

\$28,600

Perrysburg, OH

** Weather adjusted ('09 was 30% milder than '08) and Natural Gas Utility Rates fell ~20%

Energy Conservation Measure #1: (Retro)Commissioning

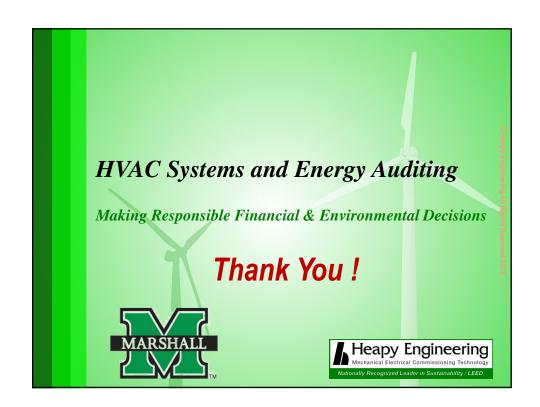
Building Commissioning

Commissioning:

"...a quality-oriented process for achieving, verifying and documenting that the performance of the facilities, systems, and assemblies meets the defined objectives and criteria."

- ASHRAE, *The Commissioning Process*(American Society of Heating, Refrigerating and Air-Conditioning Engineers)

	All		Exi	istina buil	dinas	Nev	v constru	ction					
	-		Lin	Median	l	1101	Median						
	Total	Sample	Total	per	Sample	Total	per	Sample					
Number of projects	175	175	106	project	106	69	project	69					
Number of buildings ¹	224	175	150	1.4	106	74	1.1	69					
Number of states	21	175	15		106	15		69					
Total project floor area, million square feet	30.4	175	22.2	0.151	106	8.2	0.07	69		" 。	noral	covingo	
Year built				1978	78		1996	59		е	nergy	savings	
Total new-building construction costs, millions of dollars ²						1,514	10.2	58		teno	led to	rise with t	he
Number of deficiencies identified	6,805	120	3,500	11	85	3,305	26	35		com	nrohe	ensivenes	
Commissioning cost as a fraction of total building-construction cost (excluding non-energy benefits), percent							0.6	65			•	ssioning."	
Total commissioning costs (excluding non-energy impacts ³⁾ Thousands of dollars Dollars per square foot	16,984	171	5,223	34 0.27	102 102	11,760	74 1.00	69 69					
Total savings ³ Thousands of dollars per year ⁴ Dollars per square foot	8,840	133	8,022	45 0.27	100	818	3 0.05	33 33					
per year ⁴ Whole-building	1			15	74							Source: HPAC	Mar
energy-cost savings, percent ⁵													
Simple payback time,				1.0	99		5.6	38	T	The Cost-	Effective	eness of Comm	issi
local energy prices, years													
Simple payback time, standardized U.S. energy prices, including some cases with non-energy				0.7	59		4.8	35	\ n	nttp://eet	d.lbl.gov	emills/PUBS/P/	UF/ HP/



Sustainability

Steps to Improve Sustainability:

- Energy Efficiency Improvements (ECM's)
 - Commissioning, Re-Commissioning & Continuous Commissioning
- Water Conservation Strategies
- Alternative Energy Systems
 - Combined Heat and Power / Solar Thermal & PV / etc.
- Implement Ongoing Sustainability Education Program
- Phase Out of Older Type Refrigerants
- Building Envelope Assessment (Water and Air leaks)
- Chemical Usage
 - Pest Control & Green Cleaning

